These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 6600886)
1. Linear range of Na+ pump in sciatic nerve of frog. Brink F Am J Physiol; 1983 Mar; 244(3):C198-204. PubMed ID: 6600886 [TBL] [Abstract][Full Text] [Related]
2. Components of O2-uptake by excised frog nerve dependent upon externally supplied sodium ions. Brink F Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3988-92. PubMed ID: 1081692 [TBL] [Abstract][Full Text] [Related]
3. The effect of tetrodotoxin on 22Na uptake and action potential recovery in desheathed Rana pipiens nerve. Watrous JJ; Bajpai PK Physiol Chem Phys; 1974; 6(6):489-96. PubMed ID: 4549266 [No Abstract] [Full Text] [Related]
4. Response of the frog skin to steady-state voltage clamping. II. The active pathway. Mandel LJ; Curran PF J Gen Physiol; 1973 Jul; 62(1):1-24. PubMed ID: 4543671 [TBL] [Abstract][Full Text] [Related]
8. [Transmembrane effects in the sodium pump system. I. The effect of external potassium and rubidium on the dependence of sodium efflux on sodium concentration in the frog muscle]. Marakhova II Tsitologiia; 1984 Oct; 26(10):1136-44. PubMed ID: 6096993 [TBL] [Abstract][Full Text] [Related]
9. Saturation kinetics of sodium efflux across isolated frog skin. Biber TU; Mullen TL Am J Physiol; 1976 Oct; 231(4):995-1001. PubMed ID: 136208 [TBL] [Abstract][Full Text] [Related]
10. Sodium transport in rat renal papillary collecting tubule cells in culture. Konieczkowski M; Dunn MJ J Cell Physiol; 1988 May; 135(2):235-43. PubMed ID: 3372595 [TBL] [Abstract][Full Text] [Related]
11. Permeability of endoneurial capillaries to K, Na and Cl and its relation to peripheral nerve excitability. Weerasuriya A Brain Res; 1987 Sep; 419(1-2):188-96. PubMed ID: 3499951 [TBL] [Abstract][Full Text] [Related]
12. Elimination of microwave effects on the vitality of nerves after blockage of active transport. McRee DI; Wachtel H Radiat Res; 1986 Dec; 108(3):260-8. PubMed ID: 3492008 [TBL] [Abstract][Full Text] [Related]
13. Protein kinases A and C stimulate the Na+ active transport in frog skeletal muscle without an appreciable change in the number of sarcolemmal Na+ pumps. Venosa RA Acta Physiol Scand; 2005 Dec; 185(4):329-34. PubMed ID: 16266374 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of insulin action on resting membrane potential of frog skeletal muscle. Moore RD; Rabovsky JL Am J Physiol; 1979 May; 236(5):C249-54. PubMed ID: 312605 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic analysis of active sodium and potassium transport in the frog corneal epithelium. Candia OA; Reinach PS Am J Physiol; 1982 Jun; 242(6):F690-8. PubMed ID: 6979938 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the effects of ouabain and 2-deoxy-D-glucose on the thermodynamic variables of the frog skin. Owen A; Caplan SR; Essig A Biochim Biophys Acta; 1975 Jul; 394(3):438-48. PubMed ID: 1079458 [TBL] [Abstract][Full Text] [Related]
17. Na+ and K+ levels in living cells: do they depend on the rate of outward transport of Na+? Ling GN; Ochsenfeld MM Physiol Chem Phys; 1976; 8(5):389-95. PubMed ID: 1088477 [TBL] [Abstract][Full Text] [Related]
18. Metabolic control of intracellular ion concentrations in the frog skin epithelium. Rick R Miner Electrolyte Metab; 1989; 15(3):150-4. PubMed ID: 2542746 [TBL] [Abstract][Full Text] [Related]
19. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton. Venosa RA J Physiol; 2003 Apr; 548(Pt 2):451-9. PubMed ID: 12598593 [TBL] [Abstract][Full Text] [Related]