These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 660160)

  • 21. Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus.
    Huang RC
    J Neurophysiol; 1993 Oct; 70(4):1692-703. PubMed ID: 7904302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Na(+)-Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium.
    Zhou Z; Lipsius SL
    J Physiol; 1993 Jul; 466():263-85. PubMed ID: 8410694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiological properties of neurons in intact rat dorsal root ganglia classified by conduction velocity and action potential duration.
    Villière V; McLachlan EM
    J Neurophysiol; 1996 Sep; 76(3):1924-41. PubMed ID: 8890304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two distinct low-voltage-activated Ca2+ currents contribute to the pacemaker mechanism in cockroach dorsal unpaired median neurons.
    Grolleau F; Lapied B
    J Neurophysiol; 1996 Aug; 76(2):963-76. PubMed ID: 8871211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of calcium channels in vascular smooth muscle myocytes.
    Cox RH; Kathrins M
    Cell Biochem Biophys; 2006; 45(3):229-42. PubMed ID: 16845170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the Ca2+ current in freshly dissociated crustacean peptidergic neuronal somata.
    Richmond JE; Sher E; Cooke IM
    J Neurophysiol; 1995 Jun; 73(6):2357-68. PubMed ID: 7666144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus.
    Hernández-Cruz A; Pape HC
    J Neurophysiol; 1989 Jun; 61(6):1270-83. PubMed ID: 2501459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and pharmacological properties of low voltage-activated Ca2+ current in rat clonal (GH3) pituitary cells.
    Herrington J; Lingle CJ
    J Neurophysiol; 1992 Jul; 68(1):213-32. PubMed ID: 1325546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage-clamp analysis of the ionic conductances in a leech neuron with a purely calcium-dependent action potential.
    Johansen J; Yang J; Kleinhaus AL
    J Neurophysiol; 1987 Dec; 58(6):1468-84. PubMed ID: 2449519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Further analysis of inhibitory effects of propranolol and local anaesthetics on the calcium current in Helix neurones.
    Akaike N; Ito H; Nishi K; Oyama Y
    Br J Pharmacol; 1982 May; 76(1):37-43. PubMed ID: 7082906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium and voltage dependent inactivation of sodium and calcium currents limits calcium influx in Helisoma neurons.
    Torreano PJ; Cohan CS
    J Neurobiol; 2003 Feb; 54(3):439-56. PubMed ID: 12532396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Alvarez-Leefmans FJ; Cruzblanca H; Gamiño SM; Altamirano J; Nani A; Reuss L
    J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of n-alkanols on the calcium current of intracellularly perfused neurons of Helix aspersa.
    Oyama Y; Akaike N; Nishi K
    Brain Res; 1986 Jun; 376(2):280-4. PubMed ID: 2425895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits.
    Brenes O
    Biophys Rev; 2022 Apr; 14(2):553-568. PubMed ID: 35528035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining Ca2+-sensor binding time and its variability in evoked neurotransmitter release.
    Yoon AC; Kathpalia V; D'Silva S; Cimenser A; Hua SY
    J Physiol; 2008 Feb; 586(4):1005-15. PubMed ID: 18063666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular pharmacology of high voltage-activated calcium channels.
    Doering CJ; Zamponi GW
    J Bioenerg Biomembr; 2003 Dec; 35(6):491-505. PubMed ID: 15000518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of calcium channel inactivation is dependent upon the test pulse potential.
    Gera S; Byerly L
    Biophys J; 1999 Jun; 76(6):3076-88. PubMed ID: 10354433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single L-type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons.
    Church PJ; Stanley EF
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):59-68. PubMed ID: 8910196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between burst properties and sensitivity to input: a theoretical analysis.
    Sivan E; Parnas H; Dolev D
    J Comput Neurosci; 1996 Mar; 3(1):35-50. PubMed ID: 8717488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.