These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6601895)

  • 1. Transmission delays of different portions of the arterial pulse. A comparison between the indirect aortic and carotid pulse tracings.
    Portaluppi F; Knighten V; Luisada AA
    Acta Cardiol; 1983; 38(1):49-59. PubMed ID: 6601895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A direct comparison between internally and externally measured left ventricular systolic time intervals.
    Van de Werf F; Piessens J; Kesteloot H; De Geest H
    Acta Cardiol; 1975; 30(3):171-9. PubMed ID: 1081322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of systolic time intervals derived from the central aortic pressure and from the external carotid pulse tracing.
    Van de Werf F; Piessens J; Kesteloot H; De Geest H
    Circulation; 1975 Feb; 51(2):310-6. PubMed ID: 1112011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing of the carotid arterial sounds in normal adult men: measurement of left ventricular ejection, pre-ejection period and pulse transmission time.
    Hasegawa M; Rodbard D; Kinoshita Y
    Cardiology; 1991; 78(2):138-49. PubMed ID: 2070371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection.
    Colan SD; Borow KM; Neumann A
    Am Heart J; 1985 Jun; 109(6):1306-10. PubMed ID: 4003241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanocardiographic assessment of systolic time intervals in normal children.
    Ulmer HE; Heupel EW; Weckesser G
    Basic Res Cardiol; 1982; 77(2):197-212. PubMed ID: 7092778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Left ventricular systolic time intervals. A comparison between the conventional carotid pulse curve method and the doppler ultrasound method.
    Hegrenaes L
    Eur Heart J; 1983 May; 4(5):313-9. PubMed ID: 6617677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the indirect axillary pulse tracing for noninvasive determination of ejection time, upstroke time, and left ventricular wall stress throughout ejection in infants and young children.
    Colan SD; Borow KM; MacPherson D; Sanders SP
    Am J Cardiol; 1984 Apr; 53(8):1154-8. PubMed ID: 6702695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between ejection times measured from the carotid pulse contour and the impedance cardiogram.
    Frey MA; Doerr BM
    Aviat Space Environ Med; 1983 Oct; 54(10):894-7. PubMed ID: 6651710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of aortic stenosis in older age groups using external carotid pulse recording and phonocardiography.
    Flohr KH; Weir EK; Chesler E
    Br Heart J; 1981 May; 45(5):577-82. PubMed ID: 7236464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative clinical evaluation of left ventricular ejection time using carotid and ear pulses].
    Bernardi L; Licci E; Lumina C; Marni E; Finardi G
    G Ital Cardiol; 1984 Oct; 14(10):757-61. PubMed ID: 6519384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-specific relationship of aortic pulse wave velocity with left ventricular geometry and function in hypertension.
    Schillaci G; Mannarino MR; Pucci G; Pirro M; Helou J; Savarese G; Vaudo G; Mannarino E
    Hypertension; 2007 Feb; 49(2):317-21. PubMed ID: 17200433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the effects of physiological release of melatonin on arterial distensibility and blood pressure.
    Yildiz M; Akdemir O
    Cardiol Young; 2009 Apr; 19(2):198-203. PubMed ID: 19267945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Echo-Doppler assessment of arterial stiffness in pediatric patients with Kawasaki disease.
    AlHuzaimi A; Al Mashham Y; Potts JE; De Souza AM; Sandor GG
    J Am Soc Echocardiogr; 2013 Sep; 26(9):1084-9. PubMed ID: 23800509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new ventricular-performance variable using electrocardiogram and carotid pulse contour derivative.
    Frey MA; Siervogel RM
    Jpn Heart J; 1981 May; 22(3):313-24. PubMed ID: 7265459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The normal values of systolic time intervals must be reviewed?].
    Cinelli P; Calzolari F; Buffoni M; De Leonardis V
    G Ital Cardiol; 1982; 12(2):96-100. PubMed ID: 7173546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse wave velocity and flow in the carotid artery versus the aortic arch: effects of aging.
    Kröner ES; Lamb HJ; Siebelink HM; Cannegieter SC; van den Boogaard PJ; van der Wall EE; de Roos A; Westenberg JJ
    J Magn Reson Imaging; 2014 Aug; 40(2):287-93. PubMed ID: 24677686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the severity of aortic stenosis from the carotid pulse tracing.
    Ighiyasu H; Craige E
    Jpn Heart J; 1980 Jul; 21(4):465-84. PubMed ID: 7420730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Noninvasive estimation of left ventricular end-systolic pressure].
    Suwa M; Hirota Y; Kino M; Saito T; Yoneda Y; Kawamura K
    J Cardiol; 1987 Dec; 17(4):845-51. PubMed ID: 3506609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement.
    Weber T; Ammer M; Rammer M; Adji A; O'Rourke MF; Wassertheurer S; Rosenkranz S; Eber B
    J Hypertens; 2009 Aug; 27(8):1624-30. PubMed ID: 19531964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.