These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 660222)

  • 21. [Glioarchitectonics of the cerebellar cortex and medulla of cows during postnatal development].
    Lakomy M
    Pol Arch Weter; 1980; 22(3):433-43. PubMed ID: 7267397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bergmann glial development in the mouse cerebellum as revealed by tenascin expression.
    Yuasa S
    Anat Embryol (Berl); 1996 Sep; 194(3):223-34. PubMed ID: 8849669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in foetal rhesus monkey.
    Nowakowski RS; Rakic P
    J Neurocytol; 1979 Dec; 8(6):697-718. PubMed ID: 120417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of early glial elements as the precursors of Bergmann-glia: a Golgi-analysis of the developing rat cerebellar cortex.
    Fülöp Z; Lakos I; Bascó E; Hajós F
    Acta Morphol Acad Sci Hung; 1979; 27(4):273-80. PubMed ID: 399155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytology and organization of rat cerebellar organ cultures.
    Jaeger CB; Kapoor R; Llinás R
    Neuroscience; 1988 Aug; 26(2):509-38. PubMed ID: 3173688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that mouse astrocytes may be derived from the radial glia. An immunohistochemical study of the cerebellum in the normal and reeler mouse.
    Benjelloun-Touimi S; Jacque CM; Derer P; De Vitry F; Maunoury R; Dupouey P
    J Neuroimmunol; 1985 Jul; 9(1-2):87-97. PubMed ID: 2409110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purkinje cells and granule cells in the cerebellum of the Stumbler mutant mouse.
    Caddy KW; Sidman RL
    Brain Res; 1981 Apr; 227(2):221-36. PubMed ID: 7225892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo.
    Mugnaini E; Forstronen PF
    Z Zellforsch Mikrosk Anat; 1967; 77(1):115-43. PubMed ID: 5595007
    [No Abstract]   [Full Text] [Related]  

  • 29. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum.
    Altman J; Bayer SA
    J Comp Neurol; 1978 May; 179(1):23-48. PubMed ID: 8980716
    [No Abstract]   [Full Text] [Related]  

  • 30. The development of synaptic contacts in the cerebellum of Macaca mulatta.
    Kornguth SE; Anderson JW; Scott G
    J Comp Neurol; 1968 Apr; 132(4):531-46. PubMed ID: 4969916
    [No Abstract]   [Full Text] [Related]  

  • 31. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker.
    Edwards MA; Yamamoto M; Caviness VS
    Neuroscience; 1990; 36(1):121-44. PubMed ID: 2215915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization of radial glial cells during the development of the rat dentate gyrus.
    Rickmann M; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(4):449-79. PubMed ID: 3680638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro.
    Gregory WA; Edmondson JC; Hatten ME; Mason CA
    J Neurosci; 1988 May; 8(5):1728-38. PubMed ID: 3367219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of D-amino acid oxidase in Bergmann glial cells and astrocytes of rat cerebellum.
    Horiike K; Tojo H; Arai R; Yamano T; Nozaki M; Maeda T
    Brain Res Bull; 1987 Nov; 19(5):587-96. PubMed ID: 2891417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radial glia give rise to perinodal processes.
    Sims TJ; Gilmore SA; Waxman SG
    Brain Res; 1991 May; 549(1):25-35. PubMed ID: 1893250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular localization of a putative kainate receptor in Bergmann glial cells using a monoclonal antibody in the chick and fish cerebellar cortex.
    Somogyi P; Eshhar N; Teichberg VI; Roberts JD
    Neuroscience; 1990; 35(1):9-30. PubMed ID: 2163034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pathogenesis of parvovirus-induced cerebellar hypoplasia in the Syrian hamster, Mesocricetus auratus. Fluorescent antibody, foliation, cytoarchitectonic, Golgi and electron microscopic studies.
    Oster-Granite ML; Herndon RM
    J Comp Neurol; 1976 Oct; 169(4):481-521. PubMed ID: 789416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Embryonic cerebellar astroglia in vitro.
    Hatten ME
    Brain Res; 1984 Apr; 315(2):309-13. PubMed ID: 6722592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of acutely isolated cells from developing rat cerebellum.
    Hockberger PE; Yousif L; Nam SC
    Neuroimage; 1994 Nov; 1(4):276-87. PubMed ID: 9343577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal migration independent of glial guidance: light and electron microscopic studies in the cerebellar cortex of neonatal rats.
    Zagon IS; McLaughlin PJ; Rogers WE
    Acta Anat (Basel); 1985; 122(2):77-86. PubMed ID: 4013643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.