These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ultrastructural study on axonal and dendritic growth cones in the human embryonic spinal cord. Woźniak W; Bruska M Folia Histochem Cytobiol; 1996; 34 Suppl 1():89-90. PubMed ID: 8878660 [No Abstract] [Full Text] [Related]
6. Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord. Henrikson CK; Vaughn JE J Neurocytol; 1974 Dec; 3(6):659-75. PubMed ID: 4461770 [No Abstract] [Full Text] [Related]
7. Fine structure of growth cones in the upper dorsal horn of the adult primate spinal cord in the course of reactive synapto-neogenesis. Knyihár-Csillik E; Rakic P; Csillik B Cell Tissue Res; 1985; 239(3):633-41. PubMed ID: 2580631 [TBL] [Abstract][Full Text] [Related]
8. [Formation of intricate synaptic complexes in cultures of dissociated spinal cord and spinal ganglia cells]. Skibo GG; Viktorov IV; Koval' LM Dokl Akad Nauk SSSR; 1984; 276(3):729-31. PubMed ID: 6468266 [No Abstract] [Full Text] [Related]
9. Surface specializations of neurites in embryonic mouse spinal cord. Vaughn JE; Henrikson CK Brain Res; 1976 Jul; 110(3):431-45. PubMed ID: 947466 [TBL] [Abstract][Full Text] [Related]
11. Cell recognition by neuronal growth cones in a simple vertebrate embryo. Kuwada JY Science; 1986 Aug; 233(4765):740-6. PubMed ID: 3738507 [TBL] [Abstract][Full Text] [Related]
12. Axonal and dendritic growth cones in the developing human spinal cord. Weclewicz K; Woźniak W Folia Morphol (Warsz); 1983; 42(2):69-72. PubMed ID: 6606603 [No Abstract] [Full Text] [Related]
13. A quantitative study of synapses on motor neuron dendritic growth cones in developing mouse spinal cord. Vaughn JE; Henrikson CK; Grieshaber JA J Cell Biol; 1974 Mar; 60(3):664-72. PubMed ID: 4824291 [TBL] [Abstract][Full Text] [Related]
14. Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study. Yaginuma H; Homma S; Künzi R; Oppenheim RW J Comp Neurol; 1991 Feb; 304(1):78-102. PubMed ID: 2016414 [TBL] [Abstract][Full Text] [Related]
15. Structure of the embryonic primate spinal cord at the closure of the first reflex arc. Knyihar-Csillik E; Csillik B; Rakic P Anat Embryol (Berl); 1995 Jun; 191(6):519-40. PubMed ID: 7677259 [TBL] [Abstract][Full Text] [Related]
16. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets. Itoh Y; Tessler A J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974 [TBL] [Abstract][Full Text] [Related]
17. Transient synapses in the embryonic primate spinal cord. Knyihar E; Csillik B; Rakic P Science; 1978 Dec; 202(4373):1206-9. PubMed ID: 103200 [TBL] [Abstract][Full Text] [Related]
18. Morphology and position of growth cones in the developing Xenopus spinal cord. Nordlander RH; Singer M Brain Res; 1982 Jun; 256(2):181-93. PubMed ID: 7104753 [TBL] [Abstract][Full Text] [Related]
19. Transgenic acetylcholinesterase induces enlargement of murine neuromuscular junctions but leaves spinal cord synapses intact. Andres C; Seidman S; Beeri R; Timberg R; Soreq H Neurochem Int; 1998; 32(5-6):449-56. PubMed ID: 9676744 [TBL] [Abstract][Full Text] [Related]
20. Central synapses of spinal motoneurons innervating the trunk swimming muscles of Xenopus laevis embryos. Roberts A; Walford A Acta Biol Hung; 1996; 47(1-4):371-84. PubMed ID: 9124006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]