BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 6602926)

  • 1. [Early auditory evoked potentials (EAEP) following cochlear nerve lesions in the cerebellopontile angle. An animal experiment study].
    Mika H; Maurer K
    Laryngol Rhinol Otol (Stuttg); 1983 Apr; 62(4):160-3. PubMed ID: 6602926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Cochlear nerve injuries caused by manipulations in cerebellopontine angle: Part II. An electrophysiological and morphological study in rhesus monkeys].
    Sekiya T; Møller AR; Jannetta PJ
    No Shinkei Geka; 1988; 16(5 Suppl):671-6. PubMed ID: 3260998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early auditory evoked potentials (EAEPs) in the rabbit. Normative data and effects of lesions in the cerebello-pontine angle.
    Maurer K; Mika H
    Electroencephalogr Clin Neurophysiol; 1983 May; 55(5):586-93. PubMed ID: 6187553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterioration of auditory evoked potentials during cerebellopontine angle manipulations. An interpretation based on an experimental model in dogs.
    Sekiya T; Iwabuchi T; Kamata S; Ishida T
    J Neurosurg; 1985 Oct; 63(4):598-607. PubMed ID: 3875697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cochlear nerve injuries caused by manipulations in cerebellopontine angle: Part I. Electrophysiological and morphological study in dogs].
    Sekiya T; Møller AR; Jannetta PJ
    No Shinkei Geka; 1988 Apr; 16(4):359-65. PubMed ID: 3260354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem auditory evoked potential monitoring: when is change in wave V significant?
    James ML; Husain AM
    Neurology; 2005 Nov; 65(10):1551-5. PubMed ID: 16301480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of auditory nerve following complete sectioning and intrathecal application of the IN-1 antibody.
    Tatagiba M; Rosahl S; Gharabaghi A; Blömer U; Brandis A; Skerra A; Samii M; Schwab ME
    Acta Neurochir (Wien); 2002 Feb; 144(2):181-7. PubMed ID: 11862519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrophysiological identification of the cochlear and vestibular nerves in the cerebellopontine angle: experimental study and clinical implication].
    Sekiya T; Okabe S; Iwabuchi T; Ottomo M
    No Shinkei Geka; 1992 Sep; 20(9):947-53. PubMed ID: 1407359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurophysiological mechanisms of conduction impairment of the auditory nerve during cerebellopontine angle surgery.
    Sato S; Yamada M; Koizumi H; Onozawa Y; Shimokawa N; Kawashima E; Fujii K
    Clin Neurophysiol; 2009 Feb; 120(2):329-35. PubMed ID: 19109061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Wave-length changes of the early auditory evoked potentials in acoustic neuroma].
    Maurer K
    Laryngol Rhinol Otol (Stuttg); 1982 Sep; 61(9):505-9. PubMed ID: 7144390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of real time monitoring of the cochlear function during an induced local ischemia.
    Morawski K; Telischi FF; Niemczyk K
    Hear Res; 2006 Feb; 212(1-2):117-27. PubMed ID: 16403609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adverse effects of topical papaverine on auditory nerve function.
    Chadwick GM; Asher AL; Van Der Veer CA; Pollard RJ
    Acta Neurochir (Wien); 2008 Sep; 150(9):901-9; discussion 909. PubMed ID: 18726058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis of auditory neurons following central process injury.
    Sekiya T; Yagihashi A; Shimamura N; Asano K; Suzuki S; Matsubara A; Namba A; Shinkawa H
    Exp Neurol; 2003 Dec; 184(2):648-58. PubMed ID: 14769356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Exposing the rabbit cerebellopontine angle through post-sigmoid sinus approach and recording the direct compound action potential of the auditory nerve].
    Zhu M; Wu H; Li Z; Chen X; Cao R; Shen M; Zhu C; Zhou J
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2005 Apr; 19(7):318-9. PubMed ID: 16001902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Pathophysiology of cochlear nerve injury incurred through surgical manipulation in the cerebellopontine angle. Scanning electron microscopic observations].
    Sekiya T; Okabe S; Iwabuchi T
    Neurol Med Chir (Tokyo); 1989 Feb; 29(2):77-83. PubMed ID: 2475808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damage of the peripheral auditory system after operations in the cerebellopontine angle. A scanning electron-microscopic observation in dogs.
    Sekiya T; Okabe S; Iwabuchi T
    Surg Neurol; 1988 Aug; 30(2):117-24. PubMed ID: 3261047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Relationship between directions of cerebellar retractions and cochlear and vestibular nerve injuries].
    Sekiya T; Iwabuchi T; Manabe H
    No Shinkei Geka; 1989 Jan; 17(1):41-9. PubMed ID: 2710285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.
    Gordon KA; Papsin BC; Harrison RV
    Clin Neurophysiol; 2007 Aug; 118(8):1671-84. PubMed ID: 17588811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.