These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6604078)

  • 1. The relationship between retinal axon ingrowth, terminal morphology, and terminal patterning in the optic tectum of the frog.
    Constantine-Paton M; Pitts EC; Reh TA
    J Comp Neurol; 1983 Aug; 218(3):297-313. PubMed ID: 6604078
    [No Abstract]   [Full Text] [Related]  

  • 2. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A retinotopic analysis of the central connections of the optic nerve in the frog.
    Scalia F; Fite K
    J Comp Neurol; 1974 Dec; 158(4):455-77. PubMed ID: 4548696
    [No Abstract]   [Full Text] [Related]  

  • 4. The nucleus isthmi as an intertectal relay for the ipsilateral oculotectal projection in the frog, Rana pipiens.
    Grobstein P; Comer C
    J Comp Neurol; 1983 Jun; 217(1):54-74. PubMed ID: 6603481
    [No Abstract]   [Full Text] [Related]  

  • 5. Relative number of cells projecting from contralateral and ipsilateral nucleus isthmi to loci in the optic tectum is dependent on visuotopic location: horseradish peroxidase study in the leopard frog.
    Dudkin EA; Gruberg ER
    J Comp Neurol; 1999 Nov; 414(2):212-6. PubMed ID: 10516592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway.
    Yan X; Zhao B; Butt CM; Debski EA
    Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specification of retinal central connections in Rana pipiens before the appearance of the first post-mitotic ganglion cells.
    Sharma SC; Hollyfield JG
    J Comp Neurol; 1974 Jun; 155(4):395-407. PubMed ID: 4546572
    [No Abstract]   [Full Text] [Related]  

  • 8. Combining visual information from the two eyes: the relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, Rana pipiens.
    Dudkin EA; Sheffield JB; Gruberg ER
    J Comp Neurol; 2007 May; 502(1):38-54. PubMed ID: 17335048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal specificity and plasticity in frog visual system: anatomical correlates.
    Kicliter E; Misantone LJ; Stelzner DJ
    Brain Res; 1974 Dec; 82(2):293-7. PubMed ID: 4548369
    [No Abstract]   [Full Text] [Related]  

  • 10. The optic tectum of a perciform teleost. 3. Electron microscopy of degenerating retino-tectal afferents.
    Laufer M; Vanegas H
    J Comp Neurol; 1974 Mar; 154(1):97-115. PubMed ID: 4815185
    [No Abstract]   [Full Text] [Related]  

  • 11. Optic tectum of the eastern garter snake, Thamnophis sirtalis. IV. Morphology of afferents from the retina.
    Dacey DM; Ulinski PS
    J Comp Neurol; 1986 Mar; 245(3):301-18. PubMed ID: 3958248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of periventricular neurons in retinotectal transmission in the optic tectum.
    Kinoshita M; Ito E
    Prog Neurobiol; 2006 Jun; 79(2):112-21. PubMed ID: 16901616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types, and synapses.
    Meek J
    J Comp Neurol; 1981 Jun; 199(2):149-73. PubMed ID: 7251937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in nNOS and NADPH diaphorase in frog retina and tectum after axotomy and FGF-2 application.
    Soto I; López-Roca T; Blagburn JM; Blanco RE
    Brain Res; 2006 Aug; 1103(1):65-75. PubMed ID: 16808907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic and morphometric effects of bilateral embryonic eye removal on the optic tectum and nucleus isthmus of the leopard frog.
    Constantine-Paton M; Ferrari-Eastman P
    J Comp Neurol; 1981 Mar; 196(4):645-61. PubMed ID: 6970759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Denervation of non-optic brain areas along the course of the optic tract does not affect the success of optic nerve regeneration in frogs.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1980 Apr; 190(4):763-79. PubMed ID: 6967493
    [No Abstract]   [Full Text] [Related]  

  • 17. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number.
    Norden JJ; Constantine-Paton M
    J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Anatomy and development of the visual system of Pleurodeles poiretti].
    Compoint C; Clairambault P
    J Hirnforsch; 1986; 27(1):37-43. PubMed ID: 3711655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae).
    Peterson EH
    J Comp Neurol; 1981 Feb; 196(2):225-52. PubMed ID: 7217356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normal and abnormal uncrossed retinotectal pathways in rats: an HRP study in adults.
    Lund RD; Land PW; Boles J
    J Comp Neurol; 1980 Feb; 189(4):711-20. PubMed ID: 7381047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.