BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

859 related articles for article (PubMed ID: 6604089)

  • 1. Modulation of F1 cytotoxic potentials by GvHR. Host- and donor-derived cytotoxic lymphocytes arise in the unirradiated F1 host spleens under the condition of GvHR-associated immunosuppression.
    Kubota E; Ishikawa H; Saito K
    J Immunol; 1983 Sep; 131(3):1142-8. PubMed ID: 6604089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of F1 cytotoxic potentials by GvHR: role and mode of action of non-MHC genes that determine the hybrid resistance to GvHR-associated suppression of F1 cytotoxic potential.
    Ishikawa H; Kubota E; Saito K
    J Immunol; 1984 May; 132(5):2218-25. PubMed ID: 6232314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The target minor H antigen for F1 cytotoxic T lymphocytes induced by Igh-congenic parental spleen cells is coded for by gene linked to H-2.
    Ishikawa H; Kubota E; Suzuki H; Saito K
    J Immunol; 1985 May; 134(5):2953-9. PubMed ID: 2580009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of F1 cytotoxic potentials by graft-vs-host reaction. Cooperative non-H-2- and H-2D region-gene control of F1 natural resistance to graft-vs-host reaction-associated immunosuppression.
    Ishikawa H; Saito K; Kubota E
    J Immunol; 1989 Mar; 142(5):1495-9. PubMed ID: 2918225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of L3T4+ and Lyt-2+ donor cells in graft-versus-host immune deficiency induced across a class I, class II, or whole H-2 difference.
    Moser M; Sharrow SO; Shearer GM
    J Immunol; 1988 Apr; 140(8):2600-8. PubMed ID: 3258615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-receptor anti-MHC cytotoxic T lymphocytes: their role in the resistance to graft vs host reaction.
    Kosmatopoulos K; Algara DS; Orbach-Arbouys S
    J Immunol; 1987 Feb; 138(4):1038-41. PubMed ID: 3492538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abrogation of hybrid resistance to bone marrow engraftment by graft-vs-host-induced immune deficiency.
    Hakim FT; Shearer GM
    J Immunol; 1986 Nov; 137(10):3109-16. PubMed ID: 3095424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutual recognition of parental and F1 lymphocytes. II. Analysis of graft-vs-host-induced suppressor cell activity for T cell-mediated lympholysis to trinitrophenyl self and alloantigens.
    Polisson RP; Shearer GM
    J Immunol; 1980 Oct; 125(4):1865-61. PubMed ID: 6967920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection from lethal graft-vs.-host disease by donor stem cell repopulation.
    Rozendaal L; Pals ST; Melief CJ; Gleichmann E
    Eur J Immunol; 1992 Feb; 22(2):575-9. PubMed ID: 1347016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of polyinosinic:polycytidylic acid (pI:C) on the graft-vs-host (GVH) reaction. II. Increased NK-mediated rejection on C57BL/6 lymphocytes by (C57BL/6 X A)F1 mice.
    Peres A; Nestel FP; Seemayer TA; Lapp WS
    J Immunol; 1986 Dec; 137(11):3420-7. PubMed ID: 3537120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graft-vs-host reactions (GVHR) across minor murine histocompatibility barriers. II. Development of natural suppressor cell activity.
    Maier T; Holda JH; Claman HN
    J Immunol; 1985 Sep; 135(3):1644-51. PubMed ID: 3160774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosuppression of B cells in vitro by graft-vs.-host reaction-derived T cells is caused by cytotoxic T lymphocytes.
    Rozendaal L; Pals ST; Schilham M; Melief CJ; Gleichmann E
    Eur J Immunol; 1989 Sep; 19(9):1669-75. PubMed ID: 2792183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary in vitro cytotoxic response of F1 T lymphocytes against parental antigens.
    Ishikawa H; Dutton RW
    J Immunol; 1979 Feb; 122(2):529-36. PubMed ID: 310842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asialo-GM1-positive T killer cells are generated in F1 mice injected with parental spleen cells.
    Knobloch C; Dennert G
    J Immunol; 1988 Feb; 140(3):744-9. PubMed ID: 2448375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-H-2-linked genetic regulation of cytotoxic responses to hapten-modified syngeneic cells. I. Non-H-2-linked Ir gene defect expressed on T cells is not predetermined at the stage of bone marrow cells.
    Ogata M; Shimizu J; Tsuchida T; Takai Y; Fujiwara H; Hamaoka T
    J Immunol; 1986 Feb; 136(4):1178-85. PubMed ID: 2935573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mls-1a-induced peripheral tolerance to host minor histocompatibility antigens in radiation bone marrow chimeras. Modification of T cell repertoire associated with active suppression and permanent presentation of host antigens.
    Miconnet I; Bruley-Rosset M; Halle-Pannenko O
    J Immunol; 1992 Jun; 148(12):3706-13. PubMed ID: 1534822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural killer activity in (C57BL/6 X DBA/2)F1 hybrids undergoing acute and chronic graft-vs.-host reaction.
    Pattengale PK; Ramstedt U; Gidlund M; Orn A; Axberg I; Wigzell H
    Eur J Immunol; 1983 Nov; 13(11):912-9. PubMed ID: 6641788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of cytotoxic T lymphocytes in the prevention of lupus-like disease occurring in a murine model of graft-vs-host disease.
    Via CS; Sharrow SO; Shearer GM
    J Immunol; 1987 Sep; 139(6):1840-9. PubMed ID: 2957440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of graft-versus-host reaction on the immune response to alloantigens and growth of a syngeneic tumor.
    Zaleski M
    Exp Hematol; 1975 Jan; 3(1):12-21. PubMed ID: 238866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mlsa generated suppressor cells. I. Suppression is mediated by double-negative (CD3+CD5+CD4-CD8-) alpha/beta T cell receptor-bearing cells.
    Bruley-Rosset M; Miconnet I; Canon C; Halle-Pannenko O
    J Immunol; 1990 Dec; 145(12):4046-52. PubMed ID: 1701781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.