These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6604212)

  • 1. Metabolic heterogeneity of the proximal and distal kidney tubules.
    Cojocel C; Maita K; Pasino DA; Kuo CH; Hook JB
    Life Sci; 1983 Aug; 33(9):855-61. PubMed ID: 6604212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic adaptation of the renal carbohydrate metabolism. II. Effects of a high carbohydrate diet on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules.
    García-Salguero L; Lupiánez JA
    Mol Cell Biochem; 1989 Jan; 85(1):91-100. PubMed ID: 2725482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat.
    Weinman EJ; Frankfurt SJ; Ince A; Sansom S
    J Clin Invest; 1978 Mar; 61(3):801-6. PubMed ID: 641156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented bicarbonate reabsorption by both the proximal and distal nephron maintains chloride-deplete metabolic alkalosis in rats.
    Wesson DE
    J Clin Invest; 1989 Nov; 84(5):1460-9. PubMed ID: 2808701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The renal Na+/Ca2+ exchange system is located exclusively in the distal tubule.
    Ramachandran C; Brunette MG
    Biochem J; 1989 Jan; 257(1):259-64. PubMed ID: 2920016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic adaptation of the renal carbohydrate metabolism. III. Effects of high protein diet on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules.
    García-Salguero L; Lupiáñez JA
    Mol Cell Biochem; 1989 Oct; 90(2):99-110. PubMed ID: 2555680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved separation method for rat proximal and distal renal tubules.
    Gesek FA; Wolff DW; Strandhoy JW
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F358-65. PubMed ID: 3039859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal tubular transport and catabolism of proteins and peptides.
    Carone FA; Peterson DR; Oparil S; Pullman TN
    Kidney Int; 1979 Sep; 16(3):271-8. PubMed ID: 529676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intratubular microinjection study of gentamicin transport in the rat.
    Frommer JP; Senekjian HO; Babino H; Weinman EJ
    Miner Electrolyte Metab; 1983; 9(2):108-12. PubMed ID: 6843520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A micropuncture study of the renal handling of lithium.
    Hayslett JP; Kashgarian M
    Pflugers Arch; 1979 Jun; 380(2):159-63. PubMed ID: 573443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peritubular uptake of lactate by Thamnophis proximal tubule.
    Brand PH; Stansbury R
    Am J Physiol; 1980 Apr; 238(4):F296-304. PubMed ID: 7377302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sites of ammonia addition to tubular fluid in rats with chronic metabolic acidosis.
    Sajo IM; Goldstein MB; Sonnenberg H; Stinebaugh BJ; Wilson DR; Halperin ML
    Kidney Int; 1981 Sep; 20(3):353-8. PubMed ID: 7300125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotensin metabolism in the kidney: role of tubular fluid.
    Bjerke T; Christensen EI; Boye N
    Contrib Nephrol; 1988; 68():92-7. PubMed ID: 3234003
    [No Abstract]   [Full Text] [Related]  

  • 14. Autoradiographic study of tobramycin uptake by proximal and distal tubules of normal and pyelonephritic rats.
    Bergeron MG; Marois Y; Kuehn C; Silverblatt FJ
    Antimicrob Agents Chemother; 1987 Sep; 31(9):1359-64. PubMed ID: 3314697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differentiation of proximal and distal tubules in the male rat kidney: the appearance of aldolase isozymes, aminopeptidase and alkaline phosphatase during ontogeny.
    Wachsmuth ED; Stoye JP
    Histochemistry; 1976 Jul; 47(4):315-37. PubMed ID: 955979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity of tubular transport processes in the nephron.
    Berry CA
    Annu Rev Physiol; 1982; 44():181-201. PubMed ID: 7041793
    [No Abstract]   [Full Text] [Related]  

  • 17. Disparate effects of vitamin D treatment upon mitochondrial granulation in proximal and distal renal tubule.
    Whitney JO; Goodman JR; Levitan K; LeFevre S; Piel CF
    Proc Soc Exp Biol Med; 1983 Apr; 172(4):419-23. PubMed ID: 6844351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal tubular transport of penicillin G and carbenicillin in the rat.
    Bergeron MG; Gennari FJ; Barza M; Weinstein L; Cortell S
    J Infect Dis; 1975 Oct; 132(4):374-83. PubMed ID: 810518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetraethylammonium and amantadine identify distinct organic cation transporters in rat renal cortical proximal and distal tubules.
    Goralski KB; Sitar DS
    J Pharmacol Exp Ther; 1999 Jul; 290(1):295-302. PubMed ID: 10381790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PPARγ maintains the metabolic heterogeneity and homeostasis of renal tubules.
    Lyu Z; Mao Z; Li Q; Xia Y; Liu Y; He Q; Wang Y; Zhao H; Lu Z; Zhou Q
    EBioMedicine; 2018 Dec; 38():178-190. PubMed ID: 30420298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.