These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6604548)

  • 1. The temperature dependence of creatine kinase fluxes in the rat heart.
    Matthews PM; Bland JL; Radda GK
    Biochim Biophys Acta; 1983 Sep; 763(2):140-6. PubMed ID: 6604548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM; Bland JL; Gadian DG; Radda GK
    Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH and temperature effects on kinetics of creatine kinase in aqueous solution and in isovolumic perfused heart. A 31P nuclear magnetization transfer study.
    Goudemant JF; vander Elst L; Dupont B; Van Haverbeke Y; Muller RN
    NMR Biomed; 1994 May; 7(3):101-10. PubMed ID: 8080711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phosphorus-31 nuclear magnetic resonance study of effects of altered thyroid state on cardiac bioenergetics.
    Keogh JM; Matthews PM; Seymour AM; Radda GK
    Adv Myocardiol; 1985; 6():299-309. PubMed ID: 2986261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction.
    Uğurbil K; Petein M; Maidan R; Michurski S; From AH
    Biochemistry; 1986 Jan; 25(1):100-7. PubMed ID: 3954984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of heart creatine kinase.
    Ingwall JS; Bittl JA
    Basic Res Cardiol; 1987; 82 Suppl 2():93-101. PubMed ID: 3663033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism.
    Meyer RA; Kuchmerick MJ; Brown TR
    Am J Physiol; 1982 Jan; 242(1):C1-11. PubMed ID: 7058872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine kinase kinetics in diabetic cardiomyopathy.
    Matsumoto Y; Kaneko M; Kobayashi A; Fujise Y; Yamazaki N
    Am J Physiol; 1995 Jun; 268(6 Pt 1):E1070-6. PubMed ID: 7611380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
    Bittl JA; Ingwall JS
    J Biol Chem; 1985 Mar; 260(6):3512-7. PubMed ID: 3972835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat.
    Bittl JA; DeLayre J; Ingwall JS
    Biochemistry; 1987 Sep; 26(19):6083-90. PubMed ID: 3689762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.