BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6604641)

  • 1. Specificity of glucose transport inhibitors in the frog lens.
    Lucas VA; Duncan G
    Exp Eye Res; 1983 Aug; 37(2):175-82. PubMed ID: 6604641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar transport in giant axons of Loligo.
    Baker PF; Carruthers A
    J Physiol; 1981 Jul; 316():481-502. PubMed ID: 7320878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of glucose transport by bovine retinal capillary pericytes in culture.
    Li W; Chan LS; Khatami M; Rockey JH
    Exp Eye Res; 1985 Aug; 41(2):191-9. PubMed ID: 3905422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basolateral 3-O-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells.
    Mullin JM; Kofeldt LM; Russo LM; Hagee MM; Dantzig AH
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F480-7. PubMed ID: 1558165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar transport in giant barnacle muscle fibres.
    Carruthers A
    J Physiol; 1983 Mar; 336():377-96. PubMed ID: 6875913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane glucose carriers in the monkey lens. Quantitation and regional distribution as determined by cytochalasin B binding to lens membranes.
    Lucas VA; Zigler JS
    Invest Ophthalmol Vis Sci; 1987 Aug; 28(8):1404-12. PubMed ID: 3610555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation-enhanced 3-O-methylglucose efflux from the frog sartorius: kinetics and properties of the system.
    Booz GW; Bianchi CP
    Biochim Biophys Acta; 1992 Aug; 1109(2):132-40. PubMed ID: 1520692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated glucose transport across the retinal pigment epithelium of the bullfrog (Rana catesbeiana).
    DiMattio J; Streitman J
    Exp Eye Res; 1986 Jul; 43(1):15-28. PubMed ID: 3525201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-sensitive component of 3-O-methylglucose uptake in frog skeletal muscle.
    Kitasato H; Marunaka Y
    J Membr Biol; 1985; 87(3):225-32. PubMed ID: 3878412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monensin stimulates sugar transport in avian erythrocytes.
    Bihler I; Charles P; Sawh PC
    Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells.
    Bigornia L; Bihler I
    Biochim Biophys Acta; 1986 Mar; 885(3):335-44. PubMed ID: 3511975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of 3-O-methylglucose in isolated rat retinal pigment epithelial cells.
    Stramm LE; Pautler EL
    Exp Eye Res; 1982 Aug; 35(2):91-7. PubMed ID: 7151887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport.
    Mullin JM; Snock KV; McGinn MT; Kofeldt LM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1039-49. PubMed ID: 2603953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.