These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6604808)

  • 1. Raised intracellular free calcium within the lens causes opacification and cellular uncoupling in the frog.
    Jacob TJ
    J Physiol; 1983 Aug; 341():595-601. PubMed ID: 6604808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the intracellular membrane potentials in crystalline lenses of various frogs.
    Okajima Y; Akaike N
    Comp Biochem Physiol A Comp Physiol; 1984; 77(3):543-6. PubMed ID: 6142807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential profiles in the crystalline lens of the frog.
    Rae JL
    Exp Eye Res; 1974 Sep; 19(3):227-34. PubMed ID: 4547546
    [No Abstract]   [Full Text] [Related]  

  • 4. The influence of calcium-free EGTA solution upon membrane permeability in the crystalline lens of the frog.
    Delamere NA; Paterson CA
    J Gen Physiol; 1978 May; 71(5):581-93. PubMed ID: 307048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Ca++ depletion on lens equatorial currents in frog lenses.
    Patterson JW; Walsh S; Wind BE
    Lens Eye Toxic Res; 1989; 6(4):845-52. PubMed ID: 2518637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane and junctional properties of the isolated frog lens epithelium.
    Duncan G; Stewart S; Prescott AR; Warn RM
    J Membr Biol; 1988 Jun; 102(3):195-204. PubMed ID: 3262764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular potassium activity in frog lens determined using ion specific liquid ion-exchanger filled microelectrodes.
    Paterson CA; Neville MC; Jenkins RM; Nordstrom DK
    Exp Eye Res; 1974 Jul; 19(1):43-8. PubMed ID: 4547234
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of nigericin on distribution of sodium, potassium and calcium ion in rabbit lens.
    Horiuchi M; Iwata S
    Exp Eye Res; 1983 Nov; 37(5):439-45. PubMed ID: 6671472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pCMPS-induced changes in lens membrane permeability and transparency.
    Sanderson J; Duncan G
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2518-25. PubMed ID: 8392039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causative and preventive action of calcium in cataracto-genesis.
    Gupta PD; Johar K; Vasavada A
    Acta Pharmacol Sin; 2004 Oct; 25(10):1250-6. PubMed ID: 15456524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naphthoquinone-Induced cataract in mice: possible involvement of Ca2+ release and calpain activation.
    Qian W; Shichi H
    J Ocul Pharmacol Ther; 2001 Aug; 17(4):383-92. PubMed ID: 11572469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of external calcium and glucose on internal total and ionized calcium in the rat lens.
    Duncan G; Jacob TJ
    J Physiol; 1984 Dec; 357():485-93. PubMed ID: 6512701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current-voltage relationships in the crystalline lens.
    Eisenberg RS; Rae JL
    J Physiol; 1976 Nov; 262(2):285-300. PubMed ID: 1086902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential difference of the frog lens.
    Rae JL
    Exp Eye Res; 1973 Apr; 15(4):485-94. PubMed ID: 4540814
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of ouabain, lithium, and cooling on the frog lens fiber potential.
    Okajima Y; Akaike N
    Jpn J Physiol; 1982; 32(1):45-54. PubMed ID: 6281504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connections between connexins, calcium, and cataracts in the lens.
    Gao J; Sun X; Martinez-Wittinghan FJ; Gong X; White TW; Mathias RT
    J Gen Physiol; 2004 Oct; 124(4):289-300. PubMed ID: 15452195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses.
    Delamere NA; Duncan G
    J Physiol; 1977 Oct; 272(1):167-86. PubMed ID: 304100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells.
    Williams MR; Riach RA; Collison DJ; Duncan G
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations on high and low voltage compartments in the crystalline lens of the frog.
    Delamere NA; Paterson CA
    Exp Eye Res; 1979 Nov; 29(5):555-61. PubMed ID: 316775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.