These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6605162)

  • 1. Magnesium ion-dependent contraction of skinned frog muscle fibers in calcium-free solution.
    Gulati J
    Biophys J; 1983 Oct; 44(1):113-21. PubMed ID: 6605162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of partial activation on force-velocity properties of frog skinned muscle fibers in millimolar magnesium ion.
    Podolin RA; Ford LE
    J Gen Physiol; 1986 Apr; 87(4):607-31. PubMed ID: 3486252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotonic contraction of skinned muscle fibers on a slow time base: effects of ionic strength and calcium.
    Gulati J; Podolsky RJ
    J Gen Physiol; 1981 Sep; 78(3):233-57. PubMed ID: 6977015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition.
    Gordon AM; Godt RE; Donaldson SK; Harris CE
    J Gen Physiol; 1973 Nov; 62(5):550-74. PubMed ID: 4543066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical dependence of calcium-activated force on width in highly compressed skinned fibers of the frog.
    Gulati J; Babu A
    Biophys J; 1985 Nov; 48(5):781-7. PubMed ID: 3878159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres.
    Julian FJ; Moss RL
    J Physiol; 1981 Feb; 311():179-99. PubMed ID: 6973624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration.
    Godt RE
    J Gen Physiol; 1974 Jun; 63(6):722-39. PubMed ID: 4545390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ionic strength on the kinetics of rigor development in skinned fast-twitch skeletal muscle fibres.
    Veigel C; von Maydell RD; Kress KR; Molloy JE; Fink RH
    Pflugers Arch; 1998 May; 435(6):753-61. PubMed ID: 9518502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hypertonic solutions on contraction of frog tonic muscle fibers.
    Godt RE; Kirby AC; Gordon AM
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C148-53. PubMed ID: 6607680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contraction transients of skinned muscle fibers: effects of calcium and ionic strength.
    Gulati J; Podolsky RJ
    J Gen Physiol; 1978 Nov; 72(5):701-15. PubMed ID: 310868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic strength and the contraction kinetics of skinned muscle fibers.
    Thames MD; Teichholz LE; Podolsky RJ
    J Gen Physiol; 1974 Apr; 63(4):509-30. PubMed ID: 4544880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shortening induced deactivation of skinned fibres of frog and mouse striated muscle.
    Ekelund MC; Edman KA
    Acta Physiol Scand; 1982 Oct; 116(2):189-99. PubMed ID: 6820231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+-sensitive cross-bridge dissociation in the presence of magnesium pyrophosphate in skinned rabbit psoas fibers.
    Brenner B; Yu LC; Greene LE; Eisenberg E; Schoenberg M
    Biophys J; 1986 Dec; 50(6):1101-8. PubMed ID: 3026502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of Mg 2+ on submaximum Ca 2+ -activated tension in skinned fibers of frog skeletal muscle.
    Kerrick WG; Donaldson SK
    Biochim Biophys Acta; 1972 Jul; 275(1):117-22. PubMed ID: 4538055
    [No Abstract]   [Full Text] [Related]  

  • 15. Swelling of skinned muscle fibers of the frog. Experimental observations.
    Godt RE; Maughan DW
    Biophys J; 1977 Aug; 19(2):103-16. PubMed ID: 18220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.
    Julian FJ
    J Physiol; 1971 Oct; 218(1):117-45. PubMed ID: 5316143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ionic strength on contractile force and energy consumption of skinned fibers from mammalian and crustacean striated muscle.
    Godt RE; Fogaça RT; Andrews MA; Nosek TM
    Adv Exp Med Biol; 1993; 332():763-73; discussion 773-4. PubMed ID: 8109386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic shortening speed of temperature-jump-activated intact muscle fibers. Effects of varying osmotic pressure with sucrose and KCl.
    Gulati J; Babu A
    Biophys J; 1984 Feb; 45(2):431-45. PubMed ID: 6607750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments.
    Iino M
    J Physiol; 1981 Nov; 320():449-67. PubMed ID: 6976434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.