These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6605335)

  • 21. Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells.
    Slepecky N; Chamberlain SC
    Hear Res; 1985; 20(3):245-60. PubMed ID: 3910630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for mechanical transduction in the frog vestibular sensory apparatus: II. The role of microtubules in the organization of the cuticular plate.
    Jaeger RG; Fex J; Kachar B
    Hear Res; 1994 Jun; 77(1-2):207-15. PubMed ID: 7928733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural studies of stereocilia in noise-exposed rabbits.
    Engström B; Flock A; Borg E
    Hear Res; 1983 Nov; 12(2):251-64. PubMed ID: 6643294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation.
    Saunders JC; Flock A
    Hear Res; 1986; 23(3):233-43. PubMed ID: 3745022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear mechanical responses of mouse cochlear hair bundles.
    Russell IJ; Kössl M; Richardson GP
    Proc Biol Sci; 1992 Dec; 250(1329):217-27. PubMed ID: 1362990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Tasmanian devil.
    Erven A; Skynner MJ; Okumura K; Takebayashi S; Brown SD; Steel KP; Allen ND
    Eur J Neurosci; 2002 Oct; 16(8):1433-41. PubMed ID: 12405956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geometrical array of the vestibular sensory hair bundle.
    Bagger-Sjöbäck D; Takumida M
    Acta Otolaryngol; 1988; 106(5-6):393-403. PubMed ID: 3264654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function.
    Francis SP; Krey JF; Krystofiak ES; Cui R; Nanda S; Xu W; Kachar B; Barr-Gillespie PG; Shin JB
    J Neurosci; 2015 Feb; 35(5):1999-2014. PubMed ID: 25653358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A.C. and D.C. motility of mammalian auditory sensory cells--a new concept in hearing physiology.
    Zenner HP; Plinkert PK
    Otolaryngol Pol; 1992; 46(4):333-49. PubMed ID: 1448281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional structure of the organ of Corti: a review.
    Lim DJ
    Hear Res; 1986; 22():117-46. PubMed ID: 3525482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and possible role of fast and slow potassium current components in hair cells dissociated from frog crista ampullaris.
    Martini M; Canella R; Fesce R; Rossi ML
    Pflugers Arch; 2009 Apr; 457(6):1327-42. PubMed ID: 18936960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):157-74. PubMed ID: 4086381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereociliary glycocalyx and interconnections in the guinea pig vestibular organs.
    Takumida M; Wersäll J; Bagger-Sjöbäck D
    Acta Otolaryngol; 1988; 106(1-2):130-9. PubMed ID: 2458669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of threshold shift in hair-cell stereocilia following overstimulation.
    Saunders JC; Canlon B; Flock A
    Hear Res; 1986; 23(3):245-55. PubMed ID: 3745023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connections between stereocilia in auditory hair cells of the alligator lizard.
    Csukas SR; Rosenquist TH; Mulroy MJ
    Hear Res; 1987; 30(2-3):147-55. PubMed ID: 3680062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanosensitivity of mammalian auditory hair cells in vitro.
    Russell IJ; Richardson GP; Cody AR
    Nature; 1986 May 29-Jun 4; 321(6069):517-9. PubMed ID: 3713830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
    Li H; Liu H; Balt S; Mann S; Corrales CE; Heller S
    J Comp Neurol; 2004 Jan; 468(1):125-34. PubMed ID: 14648695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Permanent noise-induced damage to stereocilia: a scanning electron microscopic study of the lizard's cochlea.
    Mulroy MJ
    Scan Electron Microsc; 1986; (Pt 4):1451-7. PubMed ID: 3810020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The tip link's role in asymmetric stereocilia motion of chick cochlear hair cells.
    Eisen MD; Duncan RK; Saunders JC
    Hear Res; 1999 Jan; 127(1-2):14-21. PubMed ID: 9925012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progression of inner ear pathology in Ames waltzer mice and the role of protocadherin 15 in hair cell development.
    Pawlowski KS; Kikkawa YS; Wright CG; Alagramam KN
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):83-94. PubMed ID: 16408167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.