BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6605725)

  • 1. Activation of cyclic AMP-dependent protein kinase isoenzymes: studies using specific antisera.
    Erlichman J; Bloomgarden D; Sarkar D; Rubin CS
    Arch Biochem Biophys; 1983 Nov; 227(1):136-46. PubMed ID: 6605725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunological and molecular characterization of the cAMP-dependent protein kinases in AtT20 cells.
    Erlichman J; Litvin Y; Fleischer N
    J Biol Chem; 1984 Aug; 259(16):10289-95. PubMed ID: 6088492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ reassociation of the regulatory and catalytic subunits of 3',5'-cyclic adenosine monophosphate-dependent protein kinase isoenzymes in AtT20 cells.
    Weiss A; Erlichman J
    Mol Endocrinol; 1988 May; 2(5):412-9. PubMed ID: 2843755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mode of action of cyclic amp in prokaryotes and eukaryotes, CAP and cAMP-dependent protein kinases].
    de Gunzburg J
    Biochimie; 1985 Jun; 67(6):563-82. PubMed ID: 2413906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormonal effects on the immunocytochemical location of 3',5'-cyclic adenosine monophosphate-dependent protein kinase in rat tissues.
    Koide Y; Beavo JA; Kapoor CL; Spruill WA; Huang HL; Levine SN; Ong SL; Bechtel PJ; Yount WJ; Steiner AL
    Endocrinology; 1981 Dec; 109(6):2226-38. PubMed ID: 6273134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat adipose tissue cAMP-dependent protein kinase: a unique form of type II.
    Beebe SJ; Corbin JD
    Mol Cell Endocrinol; 1984 Jun; 36(1-2):67-78. PubMed ID: 6086425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of two adenosine 3',5'-monophosphate-dependent protein kinases from bovine adrenal cortex.
    Ebert RF; Finn FM
    Endocrinology; 1981 Jul; 109(1):197-204. PubMed ID: 6263584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microheterogeneity of adenosine cyclic monophosphate-dependent protein kinases from mouse brain and heart.
    Malkinson AM; Gharrett AJ; Hogy L
    Biochem J; 1978 Nov; 175(2):367-75. PubMed ID: 217338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential androgenic control of prostatic cytosolic cAMP-dependent and -independent protein kinases.
    Tse EY; Goueli SA; Ahmed K
    Arch Biochem Biophys; 1984 Apr; 230(1):39-48. PubMed ID: 6712245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiserum against the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase. Reactivity towards various protein kinases.
    Schwoch G; Hamann A; Hilz H
    Biochem J; 1980 Oct; 192(1):223-30. PubMed ID: 6272695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle.
    Beavo JA; Bechtel PJ; Krebs EG
    Adv Cyclic Nucleotide Res; 1975; 5():241-51. PubMed ID: 165668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of soluble ovarian adenosine 3',5'-monophosphate-dependent protein kinase activity during prepubertal development of the rat.
    Hunzicker-Dunn M; Jungmann RA; Evely L; Hadawi GL; Maizels ET; West DE
    Endocrinology; 1984 Jul; 115(1):302-11. PubMed ID: 6329653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine 3':5'-cyclic monophosphate-dependence of protein kinase isoenzymes from mouse liver.
    Ueland PM; Doskeland SO
    Biochem J; 1976 Jul; 157(1):117-26. PubMed ID: 183739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The function of Mg-ATP in interactions between the regulatory and catalytic subunits of type I cAMP-dependent protein kinase from rabbit skeletal muscle.
    Kochevar LE; Huang LC; Huang CH
    Int J Biochem; 1986; 18(6):519-24. PubMed ID: 3011540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rabbit ovarian protein kinases. III. Gonadotrophin-induced activation of soluble adenosine 3',5'-monophosphate-dependent protein kinases.
    Hunzicker-Dunn M; Jungmann RA
    Endocrinology; 1978 Aug; 103(2):441-51. PubMed ID: 217648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of protein kinase isoenzymes under near physiological conditions. Evidence that both types (A and B) of cAMP binding sites are involved in the activation of protein kinase by cAMP and 8-N3-cAMP.
    Ogreid D; Døskeland SO
    FEBS Lett; 1982 Dec; 150(1):161-6. PubMed ID: 6297968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential activation of type I and type II 3',5'-cyclic adenosine monophosphate-dependent protein kinases by growth hormone-releasing factor.
    Bilezikjian LM; Erlichman J; Fleischer N; Vale WW
    Mol Endocrinol; 1987 Feb; 1(2):137-46. PubMed ID: 3137453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of types I and II adenosine cyclic 3',5'-phosphate dependent protein kinase.
    Bohnert JL; Malencik DA; Anderson SR; Teller D; Fischer EH
    Biochemistry; 1982 Oct; 21(22):5563-70. PubMed ID: 6293546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of soluble cyclic adenosine monophosphate-dependent protein kinase isozymes in murine embryonic palatal tissue.
    Greene RM; Linask KK; Pisano MM; Lloyd MR
    J Craniofac Genet Dev Biol; 1989; 9(2):207-22. PubMed ID: 2794008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cyclic nucleotide analogs on intrachain site I of protein kinase isozymes.
    Corbin JD; Rannels SR; Flockhart DA; Robinson-Steiner AM; Tigani MC; Døskeland SO; Suva RH; Suva R; Miller JP
    Eur J Biochem; 1982 Jul; 125(2):259-66. PubMed ID: 6288370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.