These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 6605901)

  • 1. Glucose absorption from starch hydrolysates in the human jejunum.
    Jones BJ; Brown BE; Loran JS; Edgerton D; Kennedy JF; Stead JA; Silk DB
    Gut; 1983 Dec; 24(12):1152-60. PubMed ID: 6605901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose absorption from maltotriose and glucose oligomers in the human jejunum.
    Jones BJ; Higgins BE; Silk DB
    Clin Sci (Lond); 1987 Apr; 72(4):409-14. PubMed ID: 3829588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption of glucose polymers from canine jejunum deprived of pancreatic amylase.
    Kerzner B; Sloan HR; McClung HJ; Chidi CC; Ailabouni AH; Seckel C
    Am J Physiol; 1986 Jun; 250(6 Pt 1):G824-9. PubMed ID: 2424320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intestinal liberation and resorption of monosaccharides from carbohydrates of different degrees of polymerization. I. Relation between intestinal hydrolysis of carbohydrates and resorption of monosaccharides].
    Bartels H; Link A; Daniel H; Rehner G
    Z Ernahrungswiss; 1987 Sep; 26(3):179-93. PubMed ID: 3500553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylated salivary alpha-amylases are capable of maltotriose hydrolysis and glucose formation.
    Koyama I; Komine S; Yakushijin M; Hokari S; Komoda T
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Aug; 126(4):553-60. PubMed ID: 11026667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.
    Dhital S; Lin AH; Hamaker BR; Gidley MJ; Muniandy A
    PLoS One; 2013; 8(4):e62546. PubMed ID: 23638112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monosaccharide absorption and water secretion during disaccharide perfusion of the human jejunum.
    Sandle GI; Lobley RW; Warwick R; Holmes R
    Digestion; 1983; 26(2):53-60. PubMed ID: 6840405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases.
    Lee BH; Hamaker BR
    Carbohydr Polym; 2017 Feb; 157():207-213. PubMed ID: 27987919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starch hydrolysis in man: an intraluminal process not requiring membrane digestion.
    Fogel MR; Gray GM
    J Appl Physiol; 1973 Aug; 35(2):263-7. PubMed ID: 4723037
    [No Abstract]   [Full Text] [Related]  

  • 10. Starch digestion and absorption in nonruminants.
    Gray GM
    J Nutr; 1992 Jan; 122(1):172-7. PubMed ID: 1729468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of alpha-linked glucose on jejunal sodium-glucose co-transport activity in ruminants.
    Bauer ML; Harmon DL; McLeod KR; Huntington GB
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Jun; 129(2-3):577-83. PubMed ID: 11423327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of wheat-flour and oat mill fractions on jejunal flow, starch degradation and absorption of glucose over an isolated loop of jejunum in pigs.
    Johansen HN; Bach Knudsen KE
    Br J Nutr; 1994 Aug; 72(2):299-313. PubMed ID: 7947647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE CELL-BOUND ALPHA-AMYLASES OF STREPTOCOCCUS BOVIS.
    WALKER GJ
    Biochem J; 1965 Feb; 94(2):289-98. PubMed ID: 14346085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology.
    Uma Maheswar Rao JL; Satyanarayana T
    J Appl Microbiol; 2003; 95(4):712-8. PubMed ID: 12969284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase.
    Lin AH; Ao Z; Quezada-Calvillo R; Nichols BL; Lin CT; Hamaker BR
    Carbohydr Polym; 2014 Oct; 111():33-40. PubMed ID: 25037326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS.
    Shewale SD; Pandit AB
    Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Glucose absorption from mono- and oligosaccharide solutions in the rat small intestine in vivo].
    Gruzdkov AA; Gromova LV; Grishina EV
    Ross Fiziol Zh Im I M Sechenova; 2010 Jun; 96(6):627-39. PubMed ID: 20795480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small intestinal starch digestion in steers: effect of various levels of abomasal glucose, corn starch and corn dextrin infusion on small intestinal disappearance and net glucose absorption.
    Kreikemeier KK; Harmon DL; Brandt RT; Avery TB; Johnson DE
    J Anim Sci; 1991 Jan; 69(1):328-38. PubMed ID: 2005026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New action pattern of a maltose-forming alpha-amylase from Streptomyces sp. and its possible application in bakery.
    Ammar YB; Matsubara T; Ito K; Iizuka M; Limpaseni T; Pongsawasdi P; Minamiura N
    J Biochem Mol Biol; 2002 Nov; 35(6):568-75. PubMed ID: 12470590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii.
    Moreira FG; Lenartovicz V; Peralta RM
    J Basic Microbiol; 2004; 44(1):29-35. PubMed ID: 14768025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.