These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6606063)

  • 1. Mechanical, electrical, and morphological characteristics of skeletal muscle fibers from Xenopus and other species of frogs.
    Oba T; Yamamoto M; Aoki T; Hotta K
    Jpn J Physiol; 1983; 33(4):521-34. PubMed ID: 6606063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature and Zn2+ on isometric contractile properties and electrical phenomena of frog (Rana) and Xenopus skeletal muscle fibers.
    Oba T; Takagi Y; Hotta K
    Can J Physiol Pharmacol; 1984 Dec; 62(12):1511-7. PubMed ID: 6335672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertonicity-induced inhibition of excitation-contraction coupling in Xenopus twitch fibers.
    Sato Y; Fujino M
    Jpn J Physiol; 1987; 37(5):947-53. PubMed ID: 3449670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeine treatment inhibits drug-induced calcium release from sarcoplasmic reticulum and caffeine contracture but not tetanus in frog skeletal muscle.
    Koshita M; Oba T
    Can J Physiol Pharmacol; 1989 Aug; 67(8):890-5. PubMed ID: 2557143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetanus responses under rapid bath solution change: electrotonic depolarization of transverse tubules may release Ca2+ from sarcoplasmic reticulum of Rana japonica skeletal muscle.
    Fujishiro N; Kawata H
    Comp Biochem Physiol Comp Physiol; 1992 Dec; 103(4):661-6. PubMed ID: 1361893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of sarcoplasmic reticulum 'Ca2+ release channels' in excitation-contraction coupling in vertebrate skeletal muscle.
    Brunder DG; Györke S; Dettbarn C; Palade P
    J Physiol; 1992 Jan; 445():759-78. PubMed ID: 1380087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of stimulated 45Ca efflux in skinned skeletal muscle fibers.
    Stephenson EW
    Can J Physiol Pharmacol; 1987 Apr; 65(4):632-41. PubMed ID: 2440538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle.
    Vergara J; Tsien RY; Delay M
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6352-6. PubMed ID: 2994073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle.
    Horiuti K
    J Physiol; 1986 Apr; 373():1-23. PubMed ID: 2427691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hg2+-induced contracture in mechanically skinned fibers of frog skeletal muscle.
    Aoki T; Oba T; Hotta K
    Can J Physiol Pharmacol; 1985 Sep; 63(9):1070-4. PubMed ID: 3931888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical modification of calcium release from the sarcoplasmic reticulum of mechanically skinned skeletal bullfrog muscle fibers.
    Aoki T; Oba T; Hotta K
    Can J Physiol Pharmacol; 1986 Oct; 64(10):1267-71. PubMed ID: 3492255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of changing free Ca2+ on light diffraction intensity and correlation with tension development in skinned fibers of frog skeletal muscle.
    Oba T; Hotta K
    Pflugers Arch; 1983 May; 397(3):243-7. PubMed ID: 6603609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of excitation-contraction coupling in skinned muscle fibers.
    Donaldson SK
    Med Sci Sports Exerc; 1989 Aug; 21(4):411-7. PubMed ID: 2674592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis.
    Stienen GJ; Zaremba R; Elzinga G
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):109-22. PubMed ID: 7730976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation-contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice.
    Plant DR; Lynch GS
    J Physiol; 2002 Aug; 543(Pt 1):169-76. PubMed ID: 12181289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+ release from sarcoplasmic reticulum vesicles derived from longitudinal reticulum and terminal cisternae of frog skeletal muscle.
    Koshita M; Yamamoto M; Hotta K
    J Biochem; 1982 Oct; 92(4):1103-8. PubMed ID: 6217198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of ryanodine-induced Ca2+ release in amphibian skeletal muscle.
    Hwang KS; Saida K; van Breemen C
    Biochem Biophys Res Commun; 1987 Feb; 142(3):674-9. PubMed ID: 3103614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle excitation-contraction coupling. I. Transverse tubule control of peeled fiber Ca2+-induced Ca2+ release in normal and malignant hyperthermic muscles.
    Donaldson SK; Gallant EM; Huetteman DA
    Pflugers Arch; 1989 May; 414(1):15-23. PubMed ID: 2726433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in contractile properties by androgen hormones in sexually dimorphic muscles of male frogs (Xenopus laevis).
    Regnier M; Herrera AA
    J Physiol; 1993 Feb; 461():565-81. PubMed ID: 8350275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depolarization and contraction of skeletal muscle induced by intracellular stimulation -role of T-tubules in electro-chemical coupling.
    Yamamoto Y; Hasegawa Y; Hotta K
    Jpn J Physiol; 1976; 26(3):333-43. PubMed ID: 1003696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.