These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6606589)

  • 1. Cytoplasmic phases in the first cell cycle of the activated frog egg.
    Elinson RP
    Dev Biol; 1983 Dec; 100(2):440-51. PubMed ID: 6606589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division.
    Roegiers F; Djediat C; Dumollard R; Rouvière C; Sardet C
    Development; 1999 Jun; 126(14):3101-17. PubMed ID: 10375502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis.
    Sawada T; Schatten G
    Dev Biol; 1989 Apr; 132(2):331-42. PubMed ID: 2466714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of the amphibian grey crescent: Effects of colchicine and cytochalasin B.
    Manes ME; Elinson RP; Barbieri FD
    Wilehm Roux Arch Dev Biol; 1978 Mar; 185(1):99-104. PubMed ID: 28304864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules and cytoplasmic reorganization in the frog egg.
    Houliston E; Elinson RP
    Curr Top Dev Biol; 1992; 26():53-70. PubMed ID: 1563279
    [No Abstract]   [Full Text] [Related]  

  • 7. Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs.
    Ubbels GA; Hara K; Koster CH; Kirschner MW
    J Embryol Exp Morphol; 1983 Oct; 77():15-37. PubMed ID: 6689175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization.
    Schatten H; Simerly C; Maul G; Schatten G
    Gamete Res; 1989 Jul; 23(3):309-22. PubMed ID: 2777170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of pronuclear migration in Beroe ovata.
    Rouvière C; Houliston E; Carré D; Chang P; Sardet C
    Cell Motil Cytoskeleton; 1994; 29(4):301-11. PubMed ID: 7859293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis.
    Elinson RP; Rowning B
    Dev Biol; 1988 Jul; 128(1):185-97. PubMed ID: 3289985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of cytoskeleton inhibitors on cytoplasmic localization in Chaetopterus pergamentaceus.
    Eckberg WR
    Differentiation; 1981; 19(1):55-8. PubMed ID: 7199004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of the external and internal pigment pattern upon fertilization in the egg of Xenopus laevis.
    Palecek J; Ubbels GA; Rzehak K
    J Embryol Exp Morphol; 1978 Jun; 45():203-14. PubMed ID: 566780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State of actin during the cycle of cohesiveness of the cytoplasm in parthenogenetically activated sea urchin egg.
    Coffe G; Foucault G; Soyer MO; de Billy F; Pudles J
    Exp Cell Res; 1982 Dec; 142(2):365-72. PubMed ID: 6890901
    [No Abstract]   [Full Text] [Related]  

  • 15. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs.
    Hara K; Tydeman P; Kirschner M
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):462-6. PubMed ID: 6928638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences of proteins in isolated egg surface after fertilization of Xenopus laevis.
    Miyata S; Kuruu T; Matsudo M; Kihara HK
    Cell Biol Int Rep; 1985 Dec; 9(12):1075-90. PubMed ID: 4075414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs.
    Houliston E; Elinson RP
    J Cell Biol; 1991 Sep; 114(5):1017-28. PubMed ID: 1714912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs.
    Cha BJ; Gard DL
    Dev Biol; 1999 Jan; 205(2):275-86. PubMed ID: 9917363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of injected inhibitors of microfilament and microtubule function on the gastrulation movement in Xenopus laevis.
    Nakatsuji N
    Dev Biol; 1979 Jan; 68(1):140-50. PubMed ID: 571368
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in cell-free preparations from unactivated Rana pipiens eggs.
    Lohka MJ; Masui Y
    Dev Biol; 1984 Jun; 103(2):434-42. PubMed ID: 6427039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.