These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6607766)

  • 1. The absence of specific dye-coupling among frog spinal neurons.
    Powell SL; Westerfield M
    Brain Res; 1984 Feb; 294(1):9-14. PubMed ID: 6607766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye and electrical coupling between frog motoneurons.
    Brenowitz GL; Collins WF; Erulkar SD
    Brain Res; 1983 Sep; 274(2):371-5. PubMed ID: 6194850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing of motoneurones and primary afferent projections after intracellular staining with Lucifer Yellow: dye-coupling.
    Adanina VO; Shapovalov AI; Shiriaev BI; Tamarova ZA
    Neuroscience; 1983 Jun; 9(2):453-61. PubMed ID: 6877603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat.
    Pastor AM; Mentis GZ; De La Cruz RR; Díaz E; Navarrete R
    J Neurophysiol; 2003 Feb; 89(2):793-805. PubMed ID: 12574457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability and frequent failure of lucifer yellow to pass between two electrically coupled neurons in Lymnaea stagnalis.
    Audesirk G; Audesirk T; Bowsher P
    J Neurobiol; 1982 Jul; 13(4):369-75. PubMed ID: 6286873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of competition among sensory neurons in regulation of pattern of innervation at their central and peripheral targets.
    Mendelson B; Frank E
    J Neurophysiol; 1989 Nov; 62(5):1189-200. PubMed ID: 2585049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord of the frog, Rana catesbiana.
    Cruce WL
    J Neurophysiol; 1974 Jul; 37(4):691-704. PubMed ID: 4366213
    [No Abstract]   [Full Text] [Related]  

  • 8. Dye-coupling among frog (Rana catesbeiana) taste disk cells.
    Sata O; Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1992 Sep; 103(1):99-103. PubMed ID: 1356703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for electrotonic coupling between frog motoneurons in the in situ spinal cord.
    Magherini PC; Precht W
    J Neurophysiol; 1976 May; 39(3):474-83. PubMed ID: 1084917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intracellular horseradish peroxidase injection study of connections between primary afferents and spinal cord motor neurons in the frog].
    Motorina MV; Tamarova ZA; Shapovalov AI; Shiriaev BI
    Neirofiziologiia; 1982; 14(1):60-8. PubMed ID: 7063084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical and electrotonic coupling in developing genioglossal motoneurons of the rat.
    Mazza E; Núñez-Abades PA; Spielmann JM; Cameron WE
    Brain Res; 1992 Dec; 598(1-2):127-37. PubMed ID: 1486475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. I. Effects of microelectrode impalement and intracellular staining with the fluorescent dye "Procion Yellow".
    Berthold CH; Kellerth JO; Conradi S
    J Comp Neurol; 1979 Apr; 184(4):709-40. PubMed ID: 84820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord development in anuran larvae: I. Primary and secondary neurons.
    Forehand CJ; Farel PB
    J Comp Neurol; 1982 Aug; 209(4):386-94. PubMed ID: 6982287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible target neurons of the reticulospinal cholecystokinin (CCK) projection to the lamprey spinal cord: immunohistochemistry combined with intracellular staining with lucifer yellow.
    Ohta Y; Brodin L; Grillner S; Hökfelt T; Walsh JH
    Brain Res; 1988 Apr; 445(2):400-3. PubMed ID: 3285961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics.
    Wenner P; Tsau Y; Cohen LB; O'Donovan MJ; Dan Y
    J Neurosci Methods; 1996 Dec; 70(2):111-20. PubMed ID: 9007750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double- and triple-labeling of functionally characterized central neurons projecting to peripheral targets studied in vitro.
    Viana F; Gibbs L; Berger AJ
    Neuroscience; 1990; 38(3):829-41. PubMed ID: 1702883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye coupling between spinal cord oligodendrocytes: differences in coupling efficiency between gray and white matter.
    Pastor A; Kremer M; Möller T; Kettenmann H; Dermietzel R
    Glia; 1998 Sep; 24(1):108-20. PubMed ID: 9700494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of a monosynaptic response in isolated frog spinal cords: habituation and persistent potentiation.
    Farel PB
    Adv Psychobiol; 1976; 3():273-99. PubMed ID: 9793
    [No Abstract]   [Full Text] [Related]  

  • 19. The anatomical organization of hindlimb motoneurons in the lumbar spinal cord of the frog, Rana catesbiana.
    Cruce WL
    J Comp Neurol; 1974 Jan; 153(1):59-76. PubMed ID: 4544669
    [No Abstract]   [Full Text] [Related]  

  • 20. Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes.
    Tsau Y; Wenner P; O'Donovan MJ; Cohen LB; Loew LM; Wuskell JP
    J Neurosci Methods; 1996 Dec; 70(2):121-9. PubMed ID: 9007751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.