BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6608030)

  • 1. A 1H-nuclear magnetic resonance study on lactate and intracellular pH in frog muscle.
    Seo Y; Yoshizaki K; Morimoto T
    Jpn J Physiol; 1983; 33(5):721-31. PubMed ID: 6608030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution proton magnetic resonance spectra of muscle.
    Yoshizaki K; Seo Y; Nishikawa H
    Biochim Biophys Acta; 1981 Dec; 678(2):283-91. PubMed ID: 6976187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional correlated spectroscopy (COSY) of intact frog muscle: spectral pattern characterization and lactate quantitation.
    Alonso J; Arús C; Westler WM; Markley JL
    Magn Reson Med; 1989 Sep; 11(3):316-30. PubMed ID: 2789329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of extracellular pH on lactate efflux from frog sartorius muscle.
    Seo Y
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C175-81. PubMed ID: 6332541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance.
    Dawson MJ; Gadian DG; Wilkie DR
    J Physiol; 1977 Jun; 267(3):703-35. PubMed ID: 17739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular pH measurement in frog muscle by means of 31P-nuclear magnetic resonance.
    Yoshizaki K; Nishikawa H; Yamada S; Morimoto T; Watari H
    Jpn J Physiol; 1979; 29(2):211-25. PubMed ID: 40052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of temperature and extracellular pH on metabolites: kinetics of anaerobic metabolism in resting muscle by 31P- and 1H-NMR spectroscopy.
    Vezzoli A; Gussoni M; Greco F; Zetta L
    J Exp Biol; 2003 Sep; 206(Pt 17):3043-52. PubMed ID: 12878672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle.
    Mason MJ; Thomas RC
    J Physiol; 1988 Jun; 400():459-79. PubMed ID: 3262155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional spectra of intact tissue: homonuclear Hartmann-Hahn spectroscopy provides increased sensitivity and information content as compared to COSY.
    Alonso J; Arús C; Westler WM; Markley JL
    Magn Reson Med; 1990 Jul; 15(1):142-51. PubMed ID: 2374494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P nuclear magnetic resonance studies on the glycogenolysis regulation in resting and contracting frog skeletal muscle.
    Yamada T; Kikuchi K; Sugi H
    J Physiol; 1993 Jan; 460():273-86. PubMed ID: 8487196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid homeostasis following partial ischemia in neonatal brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy.
    Corbett RJ; Laptook AR
    J Neurochem; 1990 Apr; 54(4):1208-17. PubMed ID: 2313286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate and pH mapping in calf muscles of rats during ischemia/reperfusion assessed by in vivo proton and phosphorus magnetic resonance chemical shift imaging.
    Morikawa S; Inubushi T; Kito K
    Invest Radiol; 1994 Feb; 29(2):217-23. PubMed ID: 8169101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical changes in rat leg muscle by phosphorus nuclear magnetic resonance.
    Kushmerick MJ; Meyer RA
    Am J Physiol; 1985 May; 248(5 Pt 1):C542-9. PubMed ID: 3993772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of high-field 1H-NMR spectroscopy for the study of perifused amphibian and excised mammalian muscles.
    Arús C; Bárány M
    Biochim Biophys Acta; 1986 May; 886(3):411-24. PubMed ID: 3486676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo 31P-NMR studies on aerobic recovery of frog muscle following tetanus.
    Seo Y; Yoshizaki K; Nishikawa H; Morimoto T; Naruse S; Koizuka I; Watari H
    Jpn J Physiol; 1984; 34(5):927-31. PubMed ID: 6335903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitation of lactic acid in caffeine-contracted and resting frog muscle by high resolution natural abundance 13C NMR.
    Doyle DD; Bárány M
    FEBS Lett; 1982 Apr; 140(2):237-40. PubMed ID: 7084466
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of carbon dioxide on tetanic contraction of frog skeletal muscles studied by phosphorus nuclear magnetic resonance.
    Nakamura T; Yamada K
    J Physiol; 1992; 453():247-59. PubMed ID: 1464830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H NMR of intact muscle at 11 T.
    Arús C; Bárány M; Westler WM; Markley JL
    FEBS Lett; 1984 Jan; 165(2):231-7. PubMed ID: 6607178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of extracellular buffer concentration and propionate on lactate efflux from frog muscle.
    Mason MJ; Mainwood GW; Thoden JS
    Pflugers Arch; 1986 May; 406(5):472-9. PubMed ID: 3487074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorus nuclear magnetic resonance studies of phosphorus metabolites in frog muscle.
    Yoshizaki K
    J Biochem; 1978 Jul; 84(1):11-8. PubMed ID: 29034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.