These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6608658)

  • 81. Erythrocyte transit and neutrophil concentration in the dog lung.
    Hogg JC; McLean T; Martin BA; Wiggs B
    J Appl Physiol (1985); 1988 Sep; 65(3):1217-25. PubMed ID: 3182492
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA; Richardson TE; Poole DC
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries.
    Huang Y; Doerschuk CM; Kamm RD
    J Appl Physiol (1985); 2001 Feb; 90(2):545-64. PubMed ID: 11160053
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Red blood cell motion and hematocrit distribution in a deforming capillary.
    Friend M; Lee JS
    J Biomech Eng; 1990 Nov; 112(4):451-6. PubMed ID: 2273873
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries.
    Sutton N; Tracey MC; Johnston ID; Greenaway RS; Rampling MW
    Microvasc Res; 1997 May; 53(3):272-81. PubMed ID: 9211405
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Visible spectroscopic technique for flowing erythrocytes in capillary.
    Shiga T; Tateishi N; Maeda N
    Biorheology; 1990; 27(3-4):389-97. PubMed ID: 2261505
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Regional myocardial capillary erythrocyte transit time in the normal resting heart.
    Allard MF; Kamimura CT; English DR; Henning SL; Wiggs BR
    Circ Res; 1993 Jan; 72(1):187-93. PubMed ID: 8417841
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Capillo-venous flow in the brain: significance of intravascular RBC aggregation for venous flow regulation.
    Tomita M; Tanahashi N; Takeda H; Schiszler I; Osada T; Unekawa M; Suzuki N
    Clin Hemorheol Microcirc; 2006; 34(1-2):51-7. PubMed ID: 16543617
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries.
    Gaehtgens P; Will G; Schmidt F
    Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Automated method for tracking vast numbers of FITC-labeled RBCs in microvessels of rat brain in vivo using a high-speed confocal microscope system.
    Tomita M; Osada T; Schiszler I; Tomita Y; Unekawa M; Toriumi H; Tanahashi N; Suzuki N
    Microcirculation; 2008 Feb; 15(2):163-74. PubMed ID: 18260006
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Fluid particle diffusion through high-hematocrit blood flow within a capillary tube.
    Saadatmand M; Ishikawa T; Matsuki N; Jafar Abdekhodaie M; Imai Y; Ueno H; Yamaguchi T
    J Biomech; 2011 Jan; 44(1):170-5. PubMed ID: 20887991
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microcirculation in striated muscle after acute reduction in systemic hematocrit.
    Sarelius IH
    Respir Physiol; 1989 Oct; 78(1):7-17. PubMed ID: 2813988
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Aging-related differences in cerebral capillary blood flow in anesthetized rats.
    Desjardins M; Berti R; Lefebvre J; Dubeau S; Lesage F
    Neurobiol Aging; 2014 Aug; 35(8):1947-55. PubMed ID: 24612672
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia.
    Lindbom L; Mirhashemi S; Intaglietta M; Arfors KE
    Acta Physiol Scand; 1988 Dec; 134(4):503-12. PubMed ID: 3250219
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The effect of separate red blood cells on capillary tissue oxygenation calculated with a numerical model.
    Bos C; Hoofd L; Oostendorp T
    IMA J Math Appl Med Biol; 1996 Dec; 13(4):259-74. PubMed ID: 8968786
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Evidence for sensing and integration of biological signals by the capillary network.
    Song H; Tyml K
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1235-42. PubMed ID: 8238410
    [TBL] [Abstract][Full Text] [Related]  

  • 98. 7-Nitroindazole impedes erythrocyte flow response to isovolemic hemodilution in the cerebral capillary circulation.
    Hudetz AG; Wood JD; Kampine JP
    J Cereb Blood Flow Metab; 2000 Feb; 20(2):220-4. PubMed ID: 10698058
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Occurrence of the "capillary contractility" phenomenon and its significance in the distribution of microvascular flow in frog skeletal muscle.
    Tyml K; Weigelt H; Lübbers DW
    Microvasc Res; 1984 Mar; 27(2):135-51. PubMed ID: 6608659
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Red cell shapes in capillaries.
    Bagge U; Brånemark PI
    Scand J Clin Lab Invest Suppl; 1981; 156():59-61. PubMed ID: 6948401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.