These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 6609087)
1. Functional changes in the descending antinociceptive system of morphine-dependent rats. Emmers R Exp Neurol; 1984 May; 84(2):450-62. PubMed ID: 6609087 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of the periaqueductal gray subdues sensitized pain in morphine- and meperidine-dependent rats. Emmers R Exp Neurol; 1985 May; 88(2):405-17. PubMed ID: 3872807 [TBL] [Abstract][Full Text] [Related]
3. Changes in thalamic nociception resulting from morphine- and meperidine-dependence in rats. Emmers R Exp Neurol; 1984 Jan; 83(1):118-33. PubMed ID: 6537810 [TBL] [Abstract][Full Text] [Related]
4. Influence of a serotonin receptor antagonist, 5-HTP-DP-hex, on spinal and thalamic nociceptive neurons in rats. Emmers R; Tamir H; Wilchek M Exp Neurol; 1987 Jun; 96(3):501-15. PubMed ID: 3495450 [TBL] [Abstract][Full Text] [Related]
5. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336 [TBL] [Abstract][Full Text] [Related]
6. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. Sandkühler J; Fu QG; Zimmermann M J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871 [TBL] [Abstract][Full Text] [Related]
7. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Aimone LD; Jones SL; Gebhart GF Pain; 1987 Oct; 31(1):123-136. PubMed ID: 2892163 [TBL] [Abstract][Full Text] [Related]
8. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. Reichling DB; Basbaum AI J Comp Neurol; 1990 Dec; 302(2):370-7. PubMed ID: 2289975 [TBL] [Abstract][Full Text] [Related]
9. Selective effects of pirenperone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray. Paul D; Phillips AG Psychopharmacology (Berl); 1986; 88(2):172-6. PubMed ID: 3081929 [TBL] [Abstract][Full Text] [Related]
10. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons. Dostrovsky JO; Shah Y; Gray BG J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363 [TBL] [Abstract][Full Text] [Related]
11. [The participation of nucleus raphe magnus in morphine-induced descending antinociceptive system]. Yoon SH Masui; 1987 Jan; 36(1):12-20. PubMed ID: 3560421 [No Abstract] [Full Text] [Related]
12. Suppressive influences from periaqueductal gray and nucleus raphe magnus on respiration and related reflex activities and on solitary tract neurons, and effect of naloxone. Sessle BJ; Ball GJ; Lucier GE Brain Res; 1981 Jul; 216(1):145-61. PubMed ID: 6266582 [TBL] [Abstract][Full Text] [Related]
13. Effects of thalamic sensory relay nucleus stimulation on the jaw-opening reflex in response to tooth-pulp stimulation in the cat. Tsubokawa T; Katayama Y; Hirayama T; Yamamoto T; Nishimoto H Appl Neurophysiol; 1986; 49(4):229-36. PubMed ID: 3619440 [TBL] [Abstract][Full Text] [Related]
14. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Jiang M; Behbehani MM Pain; 2001 Nov; 94(2):139-147. PubMed ID: 11690727 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation. Jones SL; Gebhart GF Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046 [TBL] [Abstract][Full Text] [Related]
16. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons. Gray BG; Dostrovsky JO J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362 [TBL] [Abstract][Full Text] [Related]
17. Ascending inhibition of nociceptive neurons in the nucleus ventralis posterolateralis following conditioning stimulation of the nucleus raphe magnus. Koyama N; Yokota T Brain Res; 1993 Apr; 609(1-2):298-306. PubMed ID: 8099523 [TBL] [Abstract][Full Text] [Related]
18. Effects of conditioning periaqueductal gray stimulation on responses of thalamic nociceptive neurons to tooth pulp stimulation. Ishii T; Nishikawa Y J Osaka Dent Univ; 1999 Apr; 33(1):9-21. PubMed ID: 10863471 [TBL] [Abstract][Full Text] [Related]
19. [The modulation of cerebral cortex and subcortical nuclei on NRM and their role in acupuncture analgesia]. Liu X Zhen Ci Yan Jiu; 1996; 21(1):4-11. PubMed ID: 9387347 [TBL] [Abstract][Full Text] [Related]
20. 5-Hydroxytryptamine and antinociception. Roberts MH Neuropharmacology; 1984 Dec; 23(12B):1529-36. PubMed ID: 6098854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]