These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 6609164)

  • 1. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle.
    McMahan UJ; Slater CR
    J Cell Biol; 1984 Apr; 98(4):1453-73. PubMed ID: 6609164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle.
    Anglister L; McMahan UJ
    J Cell Biol; 1985 Sep; 101(3):735-43. PubMed ID: 3875617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve.
    Burden SJ; Sargent PB; McMahan UJ
    J Cell Biol; 1979 Aug; 82(2):412-25. PubMed ID: 479308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions.
    Nitkin RM; Wallace BG; Spira ME; Godfrey EW; McMahan UJ
    Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 2():653-65. PubMed ID: 6586382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholinesterase from the motor nerve terminal accumulates on the synaptic basal lamina of the myofiber.
    Anglister L
    J Cell Biol; 1991 Nov; 115(3):755-64. PubMed ID: 1918162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate reinnervation of motor end plates after disruption of sheath cells and muscle fibers.
    Kuffler DP
    J Comp Neurol; 1986 Aug; 250(2):228-35. PubMed ID: 3489014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells.
    Godfrey EW; Nitkin RM; Wallace BG; Rubin LL; McMahan UJ
    J Cell Biol; 1984 Aug; 99(2):615-27. PubMed ID: 6746740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The clustering of acetylcholine receptors and formation of neuromuscular junctions in regenerating mammalian muscle grafts.
    Womble MD
    Am J Anat; 1986 Jun; 176(2):191-205. PubMed ID: 3739947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina.
    Weinberg CB; Sanes JR; Hall ZW
    Dev Biol; 1981 Jun; 84(2):255-66. PubMed ID: 20737863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density and distribution of alpha-bungarotoxin-binding sites in postsynaptic structures of regenerated rat skeletal muscle.
    Bader D
    J Cell Biol; 1981 Feb; 88(2):338-45. PubMed ID: 7204497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agrin and acetylcholine receptors are removed from abandoned synaptic sites at reinnervated frog neuromuscular junctions.
    Stanco AM; Werle MJ
    J Neurobiol; 1997 Dec; 33(7):999-1018. PubMed ID: 9407019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites.
    Sanes JR; Marshall LM; McMahan UJ
    J Cell Biol; 1978 Jul; 78(1):176-98. PubMed ID: 307554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Globular and asymmetric acetylcholinesterase in the synaptic basal lamina of skeletal muscle.
    Anglister L; Haesaert B; McMahan UJ
    J Cell Biol; 1994 Apr; 125(1):183-96. PubMed ID: 8138570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog.
    Krause M; Wernig A
    J Neurocytol; 1985 Oct; 14(5):765-80. PubMed ID: 3879268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of acetylcholine receptor clusters in mammalian sternohyoid muscle regenerating in the absence of nerves.
    Hansen-Smith FM
    Dev Biol; 1986 Nov; 118(1):129-40. PubMed ID: 3770293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction.
    Anderson MJ; Klier FG; Tanguay KE
    J Cell Biol; 1984 Nov; 99(5):1769-84. PubMed ID: 6386827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapse-specific expression of acetylcholine receptor genes and their products at original synaptic sites in rat soleus muscle fibres regenerating in the absence of innervation.
    Brenner HR; Herczeg A; Slater CR
    Development; 1992 Sep; 116(1):41-53. PubMed ID: 1282861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution and role in regeneration of N-CAM in the basal laminae of muscle and Schwann cells.
    Rieger F; Nicolet M; Pinçon-Raymond M; Murawsky M; Levi G; Edelman GM
    J Cell Biol; 1988 Aug; 107(2):707-19. PubMed ID: 3047146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrin-like molecules at synaptic sites in normal, denervated, and damaged skeletal muscles.
    Reist NE; Magill C; McMahan UJ
    J Cell Biol; 1987 Dec; 105(6 Pt 1):2457-69. PubMed ID: 2826488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of agrin on the distribution of acetylcholine receptors and sodium channels on adult skeletal muscle fibers in culture.
    Lupa MT; Caldwell JH
    J Cell Biol; 1991 Nov; 115(3):765-78. PubMed ID: 1655812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.