BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6609379)

  • 21. [Steady potential of the pigment epithelium-free frog retina. Influence of potassium and sodium].
    Höhne W
    Acta Biol Med Ger; 1972; 28(5):813-21. PubMed ID: 4538528
    [No Abstract]   [Full Text] [Related]  

  • 22. Electrical activity of trout skeletal muscle fibres.
    Eugéne D; Barets A
    J Physiol (Paris); 1982-1983; 78(9):814-20. PubMed ID: 7187766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective micro-electrodes.
    Alvarez-Leefmans FJ; Gamiño SM; Giraldez F; González-Serratos H
    J Physiol; 1986 Sep; 378():461-83. PubMed ID: 2432253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Sodium and potassium content of intrafusal muscle fibers and their resting membrane potential in different ionic media].
    Pivovarova NB; Iurkianets EA; Burovina IV; Matiushkin DP
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jun; 70(6):808-13. PubMed ID: 6237002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diphenylhydantoin reduces veratridine-induced sodium permeability in frog skeletal muscle.
    McKinney LC
    Neurosci Lett; 1985 Apr; 55(2):173-8. PubMed ID: 2582317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium dependence of membrane potential oscillation induced by veratrine.
    Dankó M; Varga E
    Acta Physiol Acad Sci Hung; 1980; 55(4):319-27. PubMed ID: 6970500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence of homologous n-alkanoic on functional properties of isolated skeletal muscles. II. Membrane resting potential and the osmotic effectiveness of alkanoic acid].
    Caffier G; Kössler F; Küchler G
    Acta Biol Med Ger; 1976; 35(10):1335-40. PubMed ID: 1035456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane potentials of frog sartorius muscle fibers, in which potassium ions were replaced by sodium.
    Sato M; Akaike N; Nishi R
    Kumamoto Med J; 1967 Mar; 20(1):39-55. PubMed ID: 6066521
    [No Abstract]   [Full Text] [Related]  

  • 29. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.
    Friis UG; Praetorius HA; Knudsen T; Johansen T
    Br J Pharmacol; 1997 Oct; 122(4):599-604. PubMed ID: 9375953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential-dependent blockade by Ba2+ of resting potassium permeability of frog sartorius [proceedings].
    Standen NB; Stanfield PR
    J Physiol; 1978 Apr; 277():70P-71P. PubMed ID: 650578
    [No Abstract]   [Full Text] [Related]  

  • 31. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells].
    Vereninov AA; Glushankova LN; Rubashkin AA
    Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular recovery from electroporation using synchronisation modulation as a rescue model for electrically injured cells.
    Dando R; Chen W
    Burns; 2008 Dec; 34(8):1128-36. PubMed ID: 18508201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanism of ion transport by the Na(+)-Ca2+,K+ exchange in rods isolated from the salamander retina.
    Perry RJ; McNaughton PA
    J Physiol; 1993 Jul; 466():443-80. PubMed ID: 8410702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The "anomalous" relationship between the concentration of potassium in the medium and the membrane potential of muscle fibers with a decreased intracellular potassium concentration. III. Change in the membrane potential during prolonged muscle incubation in saccharose-sulfate media containing 2.5 or 75 mM of potassium].
    Vereninov AA; Vinogradova TA; Toropova FV
    Tsitologiia; 1976 Feb; 18(2):195-202. PubMed ID: 951741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of digoxin on resting membrane potentials of skeletal muscles in dystrophic mice.
    Saito K; Ohkura H; Tanaka H; Kashima T; Katanasako H; Kanehisa T
    Jpn J Exp Med; 1980 Jun; 50(3):179-82. PubMed ID: 7431675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of modified Ringer's solutions on the membrane potentials of innervated and denervated frog sartorius muscle fibers.
    Levine L
    J Cell Physiol; 1966 Feb; 67(1):107-23. PubMed ID: 5937007
    [No Abstract]   [Full Text] [Related]  

  • 37. Effects on sodium efflux of treating frog sartorius muscles with hypertonic glycerol solutions.
    Venosa RA; Horowicz P
    J Membr Biol; 1973 Dec; 14(1):33-56. PubMed ID: 4544049
    [No Abstract]   [Full Text] [Related]  

  • 38. Direct measurement of intracellular free magnesium in frog skeletal muscle using magnesium-selective microelectrodes.
    López JR; Alamo L; Caputo C; Vergara J; DiPolo R
    Biochim Biophys Acta; 1984 May; 804(1):1-7. PubMed ID: 6609720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular free magnesium in frog skeletal muscle studied with a new type of magnesium-selective microelectrode: interactions between magnesium and sodium in the regulation of [Mg]i.
    Blatter LA
    Pflugers Arch; 1990 May; 416(3):238-46. PubMed ID: 2381762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes.
    Strickholm A; Wallin BG
    J Gen Physiol; 1967 Aug; 50(7):1929-53. PubMed ID: 6050974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.