These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6609520)

  • 1. Gain and phase characteristics of compensatory eye movements in light and darkness. A study with a broad frequency-band rotatory test.
    Larsby B; Hydén D; Odkvist LM
    Acta Otolaryngol; 1984; 97(3-4):223-32. PubMed ID: 6609520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of compensatory eye movements in light and darkness.
    Hydén D; Larsby B; Odkvist LM
    Acta Otolaryngol Suppl; 1984; 406():209-11. PubMed ID: 6591698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of slow compensatory eye movements in patients with bilateral vestibular loss. A study with a broad frequency-band rotatory test.
    Hydén D; Larsby B; Schwarz DW; Odkvist LM
    Acta Otolaryngol; 1983; 96(3-4):199-206. PubMed ID: 6605649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification.
    Collewijn H; Martins AJ; Steinman RM
    J Physiol; 1983 Jul; 340():259-86. PubMed ID: 6604152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements.
    De Zeeuw CI; Wylie DR; Stahl JS; Simpson JI
    J Neurophysiol; 1995 Nov; 74(5):2051-64. PubMed ID: 8592196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the vestibulo-ocular reflex and visual-vestibular interactions during active head movements.
    Takahashi M; Uemura T; Fujishiro T
    Acta Otolaryngol; 1980; 90(1-2):115-24. PubMed ID: 6969519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation.
    Pastor AM; de la Cruz RR; Baker R
    J Neurophysiol; 1992 Dec; 68(6):2003-15. PubMed ID: 1491254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual influence on head shaking using the vestibular autorotation test.
    Cheung B; Money K; Sarkar P
    J Vestib Res; 1996; 6(6):411-22. PubMed ID: 8968969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of visual and non-visual mechanisms on the vestibulo-ocular reflex during pseudo-random head movements in man.
    Barnes GR; Eason RD
    J Physiol; 1988 Jan; 395():383-400. PubMed ID: 3411484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations.
    Paige GD; Tomko DL
    J Neurophysiol; 1991 May; 65(5):1183-96. PubMed ID: 1869912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Is visual experience necessary for the maturation of vestibular control of eye movement].
    Berthoz A; Jeannerod M; Vital-Durand F; Olivéras JL
    C R Acad Hebd Seances Acad Sci D; 1975 Apr; 280(15):1805-8. PubMed ID: 810257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of human vertical visual-vestibular interaction.
    Demer JL
    J Neurophysiol; 1992 Dec; 68(6):2128-46. PubMed ID: 1491263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The plasticity of compensatory eye movements in bilateral vestibular loss. A study with low and high frequency rotatory tests.
    Möller C; Odkvist LM
    Acta Otolaryngol; 1989; 108(5-6):345-54. PubMed ID: 2589064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons.
    Kitama T; Ohki Y; Shimazu H; Tanaka M; Yoshida K
    J Neurophysiol; 1995 Jul; 74(1):273-87. PubMed ID: 7472330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular and linear vestibulo-ocular responses in humans.
    Houben MM; Goumans J; Dejongste AH; Van Der Steen J
    Ann N Y Acad Sci; 2005 Apr; 1039():68-80. PubMed ID: 15826962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal Y group in the squirrel monkey. I. Neuronal responses during rapid and long-term modifications of the vertical VOR.
    Partsalis AM; Zhang Y; Highstein SM
    J Neurophysiol; 1995 Feb; 73(2):615-31. PubMed ID: 7760122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual-vestibular interaction in the control of eye movement.
    Barnes GR; Benson AJ; Prior AR
    Aviat Space Environ Med; 1978 Apr; 49(4):557-64. PubMed ID: 305777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of compensatory eye movements in rotatory tests. II. The effect of voluntary, visual, imaginary, auditory and proprioceptive mechanisms.
    Möller C; White V; Odkvist LM
    Acta Otolaryngol; 1990; 109(3-4):168-78. PubMed ID: 2316339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey.
    Gardner EP; Fuchs AF
    J Neurophysiol; 1975 May; 38(3):627-49. PubMed ID: 1079240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional vestibular eye and head reflexes of the chameleon: characteristics of gain and phase and effects of eye position on orientation of ocular rotation axes during stimulation in yaw direction.
    Haker H; Misslisch H; Ott M; Frens MA; Henn V; Hess K; Sándor PS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jul; 189(7):509-17. PubMed ID: 12783170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.