These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6609727)

  • 1. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions.
    Umazume Y; Kasuga N
    Biophys J; 1984 Apr; 45(4):783-8. PubMed ID: 6609727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial forces within muscle fibers in rigor.
    Maughan DW; Godt RE
    J Gen Physiol; 1981 Jan; 77(1):49-64. PubMed ID: 6970793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of unusual interaction between thick and thin filaments in shrunk skinned muscle fibers of frog.
    Tsuchiya T
    Adv Exp Med Biol; 1988; 226():527-39. PubMed ID: 3261492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution.
    Brenner B; Chalovich JM; Greene LE; Eisenberg E; Schoenberg M
    Biophys J; 1986 Oct; 50(4):685-91. PubMed ID: 3022835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-bridge attachment in relaxed muscle.
    Schoenberg M; Brenner B; Chalovich JM; Greene LE; Eisenberg E
    Adv Exp Med Biol; 1984; 170():269-84. PubMed ID: 6741701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle.
    Higuchi H
    Biophys J; 1987 Jul; 52(1):29-32. PubMed ID: 3496923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of enflurane on the elastic properties of frog skinned skeletal muscle fiber under relaxed and rigor conditions].
    Nishiwaki T; Miyagishima T; Sakai H; Oka N; Dohi S; Yamamoto M
    Masui; 1991 May; 40(5):782-8. PubMed ID: 2072522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stiffness of frog skinned muscle fibres at altered lateral filament spacing.
    Goldman YE; Simmons RM
    J Physiol; 1986 Sep; 378():175-94. PubMed ID: 3491904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretch and radial compression studies on relaxed skinned muscle fibers of the frog.
    Maughan DW; Godt RE
    Biophys J; 1979 Dec; 28(3):391-402. PubMed ID: 318072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weakly attached cross-bridges in relaxed frog muscle fibers.
    Jung DW; Blangé T; de Graaf H; Treijtel BW
    Biophys J; 1989 Apr; 55(4):605-19. PubMed ID: 2785823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical dependence of calcium-activated force on width in highly compressed skinned fibers of the frog.
    Gulati J; Babu A
    Biophys J; 1985 Nov; 48(5):781-7. PubMed ID: 3878159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle.
    Xu S; Brenner B; Yu LC
    J Physiol; 1993 Jun; 465():749-65. PubMed ID: 7693922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical depolarization changes on the diffraction pattern in the transition of skinned muscle fibers from relaxed to rigor state.
    Yeh Y; Corcoran ME; Baskin RJ; Lieber RL
    Biophys J; 1983 Dec; 44(3):343-51. PubMed ID: 6607073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle cross-bridge attachment: effects on calcium binding and calcium activation.
    Gordon AM; Ridgway EB; Yates LD; Allen T
    Adv Exp Med Biol; 1988; 226():89-99. PubMed ID: 3261497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin heads contact with thin filaments in compressed relaxed skinned fibres of frog skeletal muscle.
    Umazume Y; Higuchi H; Takemori S
    J Muscle Res Cell Motil; 1991 Oct; 12(5):466-71. PubMed ID: 1939610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle force and stiffness during activation and relaxation. Implications for the actomyosin ATPase.
    Brozovich FV; Yates LD; Gordon AM
    J Gen Physiol; 1988 Mar; 91(3):399-420. PubMed ID: 2967885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-fracture studies on the cross-bridge angle distribution at various states and the thin filament stiffness in single skinned frog muscle fibers.
    Suzuki S; Oshimi Y; Sugi H
    J Electron Microsc (Tokyo); 1993 Apr; 42(2):107-16. PubMed ID: 8350022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle.
    Millman BM; Irving TC
    Biophys J; 1988 Sep; 54(3):437-47. PubMed ID: 3264728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness changes in frog skeletal muscle during contraction recorded using ultrasonic waves.
    Hatta I; Sugi H; Tamura Y
    J Physiol; 1988 Sep; 403():193-209. PubMed ID: 3075667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.