These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 6610275)
1. Induction of the morphologic changes of both acute and chronic experimental myasthenia by monoclonal antibody directed against acetylcholine receptor. Gomez CM; Wollmann RL; Richman DP Acta Neuropathol; 1984; 63(2):131-43. PubMed ID: 6610275 [TBL] [Abstract][Full Text] [Related]
2. The motor end plate in myasthenia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultrastructural study. Engel AG; Tsujihata M; Lindstrom JM; Lennon VA Ann N Y Acad Sci; 1976; 274():60-79. PubMed ID: 1066997 [TBL] [Abstract][Full Text] [Related]
3. Experimental autoimmune myasthenia gravis: a sequential and quantitative study of the neuromuscular junction ultrastructure and electrophysiologic correlations. Engel AG; Tsujihata M; Lambert EH; Lindstrom JM; Lennon VA J Neuropathol Exp Neurol; 1976; 35(5):569-87. PubMed ID: 956872 [TBL] [Abstract][Full Text] [Related]
4. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. Lindstrom JM; Engel AG; Seybold ME; Lennon VA; Lambert EH J Exp Med; 1976 Sep; 144(3):739-53. PubMed ID: 182897 [TBL] [Abstract][Full Text] [Related]
6. Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Engel AG; Sakakibara H; Sahashi K; Lindstrom JM; Lambert EH; Lennon VA Neurology; 1979 Feb; 29(2):179-88. PubMed ID: 571062 [TBL] [Abstract][Full Text] [Related]
7. Pathological mechanisms in experimental autoimmune myasthenia gravis. I. Immunogenicity of syngeneic muscle acetylcholine receptor and quantitative extraction of receptor and antibody-receptor complexes from muscles of rats with experimental automimmune myasthenia gravis. Lindstrom JM; Einarson BL; Lennon VA; Seybold ME J Exp Med; 1976 Sep; 144(3):726-38. PubMed ID: 182896 [TBL] [Abstract][Full Text] [Related]
8. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Meinl E; Klinkert WE; Wekerle H Am J Pathol; 1991 Nov; 139(5):995-1008. PubMed ID: 1951638 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructural aspects of acetylcholine receptor turnover at the normal end-plate and in autoimmune myasthenia gravis. Fumagalli G; Engel AG; Lindstrom J J Neuropathol Exp Neurol; 1982 Nov; 41(6):567-79. PubMed ID: 6982313 [TBL] [Abstract][Full Text] [Related]
10. Refractoriness to a second episode of experimental myasthenia gravis. Correlation with AChR concentration and morphologic appearance of the postsynaptic membrane. Corey AL; Richman DP; Agius MA; Wollmann RL J Immunol; 1987 May; 138(10):3269-75. PubMed ID: 3494763 [TBL] [Abstract][Full Text] [Related]
11. Age-related resistance to experimental autoimmune myasthenia gravis in rats. Graus YM; Verschuuren JJ; Spaans F; Jennekens F; van Breda Vriesman PJ; De Baets MH J Immunol; 1993 May; 150(9):4093-103. PubMed ID: 8386206 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Martínez-Martínez P; Losen M; Duimel H; Frederik P; Spaans F; Molenaar P; Vincent A; De Baets MH Am J Pathol; 2007 Feb; 170(2):644-57. PubMed ID: 17255332 [TBL] [Abstract][Full Text] [Related]