These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 6610416)
1. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Suematsu E; Hirata M; Hashimoto T; Kuriyama H Biochem Biophys Res Commun; 1984 Apr; 120(2):481-5. PubMed ID: 6610416 [TBL] [Abstract][Full Text] [Related]
2. Roles of Ca2+ on the inositol 1,4,5-trisphosphate-induced release of Ca2+ from saponin-permeabilized single cells of the porcine coronary artery. Suematsu E; Hirata M; Sasaguri T; Hashimoto T; Kuriyama H Comp Biochem Physiol A Comp Physiol; 1985; 82(3):645-9. PubMed ID: 2866887 [TBL] [Abstract][Full Text] [Related]
3. Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Hirata M; Suematsu E; Hashimoto T; Hamachi T; Koga T Biochem J; 1984 Oct; 223(1):229-36. PubMed ID: 6333869 [TBL] [Abstract][Full Text] [Related]
4. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. Hashimoto T; Hirata M; Itoh T; Kanmura Y; Kuriyama H J Physiol; 1986 Jan; 370():605-18. PubMed ID: 3007748 [TBL] [Abstract][Full Text] [Related]
5. Increase in Ca2+ permeability of intracellular Ca2+ store membrane of saponin-treated guinea pig peritoneal macrophages by inositol 1,4,5-trisphosphate. Hirata M; Kukita M; Sasaguri T; Suematsu E; Hashimoto T; Koga T J Biochem; 1985 Jun; 97(6):1575-82. PubMed ID: 3875610 [TBL] [Abstract][Full Text] [Related]
6. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Hashimoto T; Hirata M; Ito Y Br J Pharmacol; 1985 Sep; 86(1):191-9. PubMed ID: 3876861 [TBL] [Abstract][Full Text] [Related]
7. Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets. O'Rourke FA; Halenda SP; Zavoico GB; Feinstein MB J Biol Chem; 1985 Jan; 260(2):956-62. PubMed ID: 2981853 [TBL] [Abstract][Full Text] [Related]
15. Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate. Drøbak BK; Ferguson IB Biochem Biophys Res Commun; 1985 Aug; 130(3):1241-6. PubMed ID: 3875346 [TBL] [Abstract][Full Text] [Related]
16. Possible physiological role of guanosine triphosphate and inositol 1,4,5-trisphosphate in Ca2+ release in macrophages stimulated with chemotactic peptide. Kimura Y; Hirata M; Hamachi T; Koga T Biochem J; 1988 Jan; 249(2):531-6. PubMed ID: 3257693 [TBL] [Abstract][Full Text] [Related]
17. The second messenger linking receptor activation to internal Ca release in liver. Burgess GM; Godfrey PP; McKinney JS; Berridge MJ; Irvine RF; Putney JW Nature; 1984 May 3-9; 309(5963):63-6. PubMed ID: 6325926 [TBL] [Abstract][Full Text] [Related]
18. Modulation of intracellular Ca2+ in the parathyroid cell. Release of Ca2+ from non-mitochondrial pools by inositol trisphosphate. Epstein PA; Prentki M; Attie MF FEBS Lett; 1985 Aug; 188(1):141-4. PubMed ID: 3874790 [TBL] [Abstract][Full Text] [Related]
19. Effects of procaine on pharmaco-mechanical coupling mechanisms activated by acetylcholine in smooth muscle cells of porcine coronary artery. Ueno H; Sumimoto K; Hashimoto T; Hirata M; Kuriyama H Circ Res; 1987 Mar; 60(3):356-66. PubMed ID: 3034448 [TBL] [Abstract][Full Text] [Related]
20. Inositol 1,4,5-trisphosphate enhances Ca2+-sensitivity of the contractile mechanism of chemically skinned rabbit skeletal muscle fibres. Thieleczek R; Heilmeyer LM Biochem Biophys Res Commun; 1986 Mar; 135(2):662-9. PubMed ID: 3485975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]