These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The acquisition of receptors for peanut agglutinin by peanut agglutinin-negative thymocytes and peripheral T cells. Schrader JW; Chen WF; Scollay R J Immunol; 1982 Aug; 129(2):545-9. PubMed ID: 6979577 [TBL] [Abstract][Full Text] [Related]
7. Study of rat lymphocytes by use of peanut agglutinin. London J; Thuillier L; Garreau F; Petit M Thymus; 1981 Nov; 3(4-5):277-87. PubMed ID: 6976027 [TBL] [Abstract][Full Text] [Related]
8. Identification of glycoproteins that are receptors for peanut agglutinin on immature (cortical) mouse thymocytes. De Maio A; Lis H; Gershoni JM; Sharon N FEBS Lett; 1986 Jan; 194(1):28-32. PubMed ID: 3940888 [TBL] [Abstract][Full Text] [Related]
9. Dexamethasone induces different cellular protein synthetic responses in PNA+ and PNA- mouse thymocyte subpopulations. Khalid BA; Pearce P; Barr IG; Fraillon D; Toh BH; Funder JW J Immunol; 1983 Jan; 130(1):115-20. PubMed ID: 6600171 [TBL] [Abstract][Full Text] [Related]
10. Expression of binding sites for peanut agglutinin during murine B lymphocyte differentiation. Newman RA; Boss MA Immunology; 1980 Jun; 40(2):193-200. PubMed ID: 6997192 [TBL] [Abstract][Full Text] [Related]
12. Peanut agglutinin. V. Thymocyte subpopulations in the mouse studied with peanut agglutinin and Ly-6.2 antiserum. London J; Horton MA J Immunol; 1980 Apr; 124(4):1803-7. PubMed ID: 6988508 [TBL] [Abstract][Full Text] [Related]
13. Lectin separation of nonlymphoid suppressor cells induced by total lymphoid irradiation. Morecki S; Weigensberg M; Slavin S Eur J Immunol; 1985 Feb; 15(2):138-48. PubMed ID: 3156046 [TBL] [Abstract][Full Text] [Related]
14. Peanut agglutinin as a marker of maturation and activation of chicken thymic-derived lymphocytes. Uni Z; Heller ED Poult Sci; 1991 Jul; 70(7):1516-20. PubMed ID: 1886862 [TBL] [Abstract][Full Text] [Related]
15. Interaction of peanut agglutinin with normal human lymphocytes and with leukemic cells. Reisner Y; Biniaminov M; Rosenthal E; Sharon N; Ramot B Proc Natl Acad Sci U S A; 1979 Jan; 76(1):447-51. PubMed ID: 311473 [TBL] [Abstract][Full Text] [Related]
16. Different T cell antigens and receptors for peanut agglutinin and Helix pomatia agglutinin on steroid-sensitive and resistant lymphocytes in the rabbit using double immunofluorescence. Roholl PJ; Wormmeester J Immunobiology; 1983 May; 164(5):325-32. PubMed ID: 6409802 [TBL] [Abstract][Full Text] [Related]
17. Lectin-binding and spontaneous capping characteristics of the thymocyte glycophorin-like glycoprotein. de Petris S Exp Cell Res; 1984 Jun; 152(2):510-9. PubMed ID: 6609831 [TBL] [Abstract][Full Text] [Related]
18. Cytokine-dependent thymocyte responses: characterization of IL 1 and IL 2 target subpopulations and mechanism of action. Conlon PJ; Henney CS; Gillis S J Immunol; 1982 Feb; 128(2):797-801. PubMed ID: 6798124 [TBL] [Abstract][Full Text] [Related]
19. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Rak JW; McEachern D; Miller FR Br J Cancer; 1992 May; 65(5):641-8. PubMed ID: 1586590 [TBL] [Abstract][Full Text] [Related]
20. Indomethacin-induced sialic acid-mediated changes in surface markers from "cortical type" to "medullary type" in murine thymoma line EL-4. Tomooka S; Serushago BA; Koga Y; Taniguchi K; Nomoto K Immunobiology; 1986 Jul; 171(4-5):345-56. PubMed ID: 2875027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]