These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6611043)

  • 21. Sarcomere length behaviour along single frog muscle fibres at different lengths during isometric tetani.
    Burton K; Zagotta WN; Baskin RJ
    J Muscle Res Cell Motil; 1989 Feb; 10(1):67-84. PubMed ID: 2785118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sarcomere length dependence of muscle stiffness changes during contraction recorded using ultrasonic waves.
    Tamura Y; Hatta I; Sugi H
    Adv Exp Med Biol; 1988; 226():541-51. PubMed ID: 3261493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of free calcium on the maximum speed of shortening in skinned frog muscle fibres.
    Julian FJ; Rome LC; Stephenson DG; Striz S
    J Physiol; 1986 Nov; 380():257-73. PubMed ID: 3497264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantized nature of sarcomere shortening steps.
    Jacobson RC; Tirosh R; Delay MJ; Pollack GH
    J Muscle Res Cell Motil; 1983 Oct; 4(5):529-42. PubMed ID: 6605977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stretch of contracting muscle fibres: evidence for regularly spaced active sites along the filaments and enhanced mechanical performance.
    Edman KA; Elzinga G; Noble MI
    Adv Exp Med Biol; 1984; 170():739-51. PubMed ID: 6611040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Length-tension-velocity relationships studied in short consecutive segments of intact muscle fibres of the frog.
    Edman KA; Reggiani C
    Adv Exp Med Biol; 1984; 170():495-509. PubMed ID: 6611031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stiffness, force, and sarcomere shortening during a twitch in frog semitendinosus muscle bundles.
    Schoenberg M; Wells JB
    Biophys J; 1984 Feb; 45(2):389-97. PubMed ID: 6607749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Force depression in single myofibrils.
    Joumaa V; Herzog W
    J Appl Physiol (1985); 2010 Feb; 108(2):356-62. PubMed ID: 20007852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenazo III calcium transients and latency relaxation in frog skeletal muscle fibres at different sarcomere lengths.
    Close RI; Lännergren JI
    J Physiol; 1984 Oct; 355():323-44. PubMed ID: 6491994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sarcomere length and force changes in single tetanized from muscle fibers following quick changes in fiber length.
    Sugi H; Kobayashi T
    Adv Exp Med Biol; 1984; 170():623-35. PubMed ID: 6741710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absence of plateau of the sarcomere length-tension relation in frog muscle fibres.
    Edman KA; Reggiani C
    Acta Physiol Scand; 1984 Oct; 122(2):213-6. PubMed ID: 6334973
    [No Abstract]   [Full Text] [Related]  

  • 34. The sarcomere length dependence of the rate of heat production during isometric tetanic contraction of frog muscles.
    Elzinga G; Peckham M; Woledge RC
    J Physiol; 1984 Dec; 357():495-504. PubMed ID: 6334734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of energy output on force generation during muscle contraction.
    Rall JA
    Am J Physiol; 1978 Jul; 235(1):C20-4. PubMed ID: 307913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillatory contraction of single sarcomere in single myofibril of glycerinated, striated adductor muscle of scallop.
    Tameyasu T
    Jpn J Physiol; 1994; 44(3):295-318. PubMed ID: 7823419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stepwise shortening in unstimulated frog skeletal muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1985 May; 362():173-88. PubMed ID: 3874953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils.
    Lionne C; Travers F; Barman T
    Biophys J; 1996 Feb; 70(2):887-95. PubMed ID: 8789106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATPase and shortening rates in frog fast skeletal myofibrils by time-resolved measurements of protein-bound and free Pi.
    Barman T; Brune M; Lionne C; Piroddi N; Poggesi C; Stehle R; Tesi C; Travers F; Webb MR
    Biophys J; 1998 Jun; 74(6):3120-30. PubMed ID: 9635765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The sarcomere length-tension relation determined in short segments of intact muscle fibres of the frog.
    Edman KA; Reggiani C
    J Physiol; 1987 Apr; 385():709-32. PubMed ID: 3498827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.