BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 6611274)

  • 21. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins.
    Huang M; Rigby AC; Morelli X; Grant MA; Huang G; Furie B; Seaton B; Furie BC
    Nat Struct Biol; 2003 Sep; 10(9):751-6. PubMed ID: 12923575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteocalcin. Biochemical considerations and clinical applications.
    Lian JB; Gundberg CM
    Clin Orthop Relat Res; 1988 Jan; (226):267-91. PubMed ID: 3275514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nature of the vitamin K-dependent CO2 fixation in microsomal membranes.
    Houser RM; Searcey MT; Gardner EJ; Scheinbuks J; Subba Rao GN; Jones JP; Hall AL
    Fed Proc; 1978 Oct; 37(12):2610-4. PubMed ID: 700170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The determination of a calcium-dependent binding constant of the bovine prothrombin Gla domain (residues 1-45) to phospholipid vesicles.
    Weber DJ; Pollock JS; Pedersen LG; Hiskey RG
    Biochem Biophys Res Commun; 1988 Aug; 155(1):230-5. PubMed ID: 3415682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presence of osteocalcin and related higher molecular weight 4-carboxyglutamic acid-containing proteins in developing bone.
    Hauschka PV; Frenkel J; DeMuth R; Gundberg CM
    J Biol Chem; 1983 Jan; 258(1):176-82. PubMed ID: 6600233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functions of individual gamma-carboxyglutamic acid (Gla) residues of human protein c. Determination of functionally nonessential Gla residues and correlations with their mode of binding to calcium.
    Christiansen WT; Tulinsky A; Castellino FJ
    Biochemistry; 1994 Dec; 33(50):14993-5000. PubMed ID: 7999756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct identification of gamma-carboxyglutamic acid in the sequencing of vitamin K-dependent proteins.
    Cairns JR; Williamson MK; Price PA
    Anal Biochem; 1991 Nov; 199(1):93-7. PubMed ID: 1807167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The PT1-Ca2+ Gla domain binds to a membrane through two dipalmitoylphosphatidylserines. A computational study.
    Rodríguez Y; Mezei M; Osman R
    Biochemistry; 2008 Dec; 47(50):13267-78. PubMed ID: 19086158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interaction of bone Gla protein (osteocalcin) with phospholipid vesicles.
    Gendreau MA; Krishnaswamy S; Mann KG
    J Biol Chem; 1989 Apr; 264(12):6972-8. PubMed ID: 2785110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain.
    Itoh S; Yokoyama R; Kamoshida G; Fujiwara T; Okada H; Takii T; Tsuji T; Fujii S; Hashizume H; Onozaki K
    J Biol Chem; 2013 Jul; 288(30):21569-80. PubMed ID: 23754290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of specific gamma-carboxyglutamic acid residues in prothrombin. Evaluation by site-specific mutagenesis.
    Ratcliffe JV; Furie B; Furie BC
    J Biol Chem; 1993 Nov; 268(32):24339-45. PubMed ID: 8226983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in gamma-carboxyglutamic acid levels in acid-soluble and insoluble fractions of developing chick bones.
    Kuwada M; Katayama K; Suzuki Y
    J Nutr Sci Vitaminol (Tokyo); 1984 Apr; 30(2):205-8. PubMed ID: 6332185
    [No Abstract]   [Full Text] [Related]  

  • 33. The effect of Gla-containing proteins on the precipitation of insoluble salts.
    van de Loo PG; Soute BA; van Haarlem LJ; Vermeer C
    Biochem Biophys Res Commun; 1987 Jan; 142(1):113-9. PubMed ID: 3492999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The gamma-carboxyglutamic acid domain of anticoagulant protein S is involved in activated protein C cofactor activity, independently of phospholipid binding.
    Saller F; Villoutreix BO; Amelot A; Kaabache T; Le Bonniec BF; Aiach M; Gandrille S; Borgel D
    Blood; 2005 Jan; 105(1):122-30. PubMed ID: 15308562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors.
    Stenflo J
    Crit Rev Eukaryot Gene Expr; 1999; 9(1):59-88. PubMed ID: 10200912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the phospholipid binding site in the vitamin K-dependent blood coagulation protein factor IX.
    Freedman SJ; Blostein MD; Baleja JD; Jacobs M; Furie BC; Furie B
    J Biol Chem; 1996 Jul; 271(27):16227-36. PubMed ID: 8663165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Vitamin K and bone metabolism - on the effect of vitamin K deficiency and gamma-carboxyglutamic acid (author's transl)].
    Mutoh Y
    Nihon Seikeigeka Gakkai Zasshi; 1980 Dec; 54(12):1733-43. PubMed ID: 7288229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Homology modeling and molecular dynamics simulation of human prothrombin fragment 1.
    Li L; Darden T; Foley C; Hiskey R; Pedersen L
    Protein Sci; 1995 Nov; 4(11):2341-8. PubMed ID: 8563631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of a gamma-carboxyglutamic acid containing heptapeptide corresponding to bovine prothrombin residues 17-23.
    Hoke RA; Deerfield DW; Pedersen LG; Koehler KA; Hiskey RG
    Int J Pept Protein Res; 1986 Dec; 28(6):569-78. PubMed ID: 3818174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the role of gamma-carboxyglutamic acid in calcium and phospholipid binding.
    Nelsestuen GL; Broderius M; Zytkovicz TH; Howard JB
    Biochem Biophys Res Commun; 1975 Jul; 65(1):233-40. PubMed ID: 1147986
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.