These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 6612673)
21. Thrombin-endothelial interactions: role in lung vascular permeability. Malik AB; Lo SK Mol Aspects Med; 1985; 8(6):515-54. PubMed ID: 3916278 [No Abstract] [Full Text] [Related]
22. The Microcirculatory Society Eugene M. Landis Award lecture. Role of blood cells in microcirculatory regulation. Chien S Microvasc Res; 1985 Mar; 29(2):129-51. PubMed ID: 3887106 [No Abstract] [Full Text] [Related]
23. An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes. Pasquale L; Winiski A; Oliva C; Vaio G; McLaughlin S J Gen Physiol; 1986 Dec; 88(6):697-718. PubMed ID: 3794637 [TBL] [Abstract][Full Text] [Related]
24. A model for red blood cell motion in glycocalyx-lined capillaries. Secomb TW; Hsu R; Pries AR Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216 [TBL] [Abstract][Full Text] [Related]
26. Impedance of a fibrin clot in a cylindrical tube: relation to clot permeability and viscoelasticity. Thurston GB; Henderson NM Biorheology; 1995; 32(5):503-20. PubMed ID: 8541521 [TBL] [Abstract][Full Text] [Related]
27. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Damiano ER Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411 [TBL] [Abstract][Full Text] [Related]
29. The endoendothelial fibrin(ogenin) lining and its physiological significance. Copley AL Biorheology; 1988; 25(1-2):377-99. PubMed ID: 3058223 [No Abstract] [Full Text] [Related]
30. Blood flow in capillary tubes: curvature and gravity effects. Hung TC; Hung TK; Bugliarello G Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345 [No Abstract] [Full Text] [Related]
31. Large scale model studies of apparent viscosity and erythrocyte velocity in capillaries. Hochmuth RM; Sutera SP Bibl Anat; 1969; 10():113-23. PubMed ID: 5407354 [No Abstract] [Full Text] [Related]
32. [Macro- and micro-rheology of blood circulation]. Niimi H Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292 [No Abstract] [Full Text] [Related]
33. Theoretical models of capillary flow. Skalak R Blood Cells; 1982; 8(1):147-52. PubMed ID: 7115972 [TBL] [Abstract][Full Text] [Related]
34. Theoretical model of blood flow through hollow fibres considering hematocrit-dependent, non-Newtonian blood properties. Lerche D; Oelke R Int J Artif Organs; 1990 Nov; 13(11):742-6. PubMed ID: 2089012 [TBL] [Abstract][Full Text] [Related]
35. Slow viscous flow of a sphere along a deformable tube. Chow TS; Saibel E Biorheology; 1970 Apr; 6(4):307-14. PubMed ID: 5432719 [No Abstract] [Full Text] [Related]
36. [Hemorheology and microcirculation]. Pretolani E G Clin Med; 1988 Oct; 69(10):601-4. PubMed ID: 3229610 [No Abstract] [Full Text] [Related]
37. Analysis of viscous deformation of the red cell and its effect upon microvascular flow. Wells R; Schmid-Schönbein H; Bygdeman S Bibl Anat; 1969; 10():92-8. PubMed ID: 5407427 [No Abstract] [Full Text] [Related]
38. Blood flow in the microcirculation of man and the flow properties of blood: a correlative study. Wells R Bibl Anat; 1967; 9():520-4. PubMed ID: 4961777 [No Abstract] [Full Text] [Related]
39. Modeling fibrin aggregation in blood flow with discrete-particles. Boryczko K; Dzwinel W; Yuen DA Comput Methods Programs Biomed; 2004 Sep; 75(3):181-94. PubMed ID: 15265617 [TBL] [Abstract][Full Text] [Related]