These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 6613165)
21. Potentialities of yeasts in production of single-cell proteins (SCP). Ashy MA; Abou-Zeid A Zentralbl Mikrobiol; 1982; 137(5):387-94. PubMed ID: 7180229 [TBL] [Abstract][Full Text] [Related]
22. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Xu Q; Knoshaug EP; Wang W; Alahuhta M; Baker JO; Yang S; Vander Wall T; Decker SR; Himmel ME; Zhang M; Wei H Microb Cell Fact; 2017 Jul; 16(1):126. PubMed ID: 28738851 [TBL] [Abstract][Full Text] [Related]
23. [Characteristics of 2 strains of yeasts, producers of protein, cultured on a complex medium with whey]. Kostov V; Kekhlibarova L; Tsvetkova B; Katranushkova Kh Acta Microbiol Bulg; 1988; 22():68-73. PubMed ID: 3266819 [No Abstract] [Full Text] [Related]
24. The proteome analysis of oleaginous yeast Lipomyces starkeyi. Liu H; Zhao X; Wang F; Jiang X; Zhang S; Ye M; Zhao ZK; Zou H FEMS Yeast Res; 2011 Feb; 11(1):42-51. PubMed ID: 21040454 [TBL] [Abstract][Full Text] [Related]
25. Fermentation process design aspects of single cell protein from hydrocarbons. Shepherd PG; Fraissignes B; Peet WA Biotechnol Bioeng Symp; 1974; 0(4-2):721-32. PubMed ID: 4413455 [No Abstract] [Full Text] [Related]
26. New insights into the capacity of commercial wine yeasts to grow on sparkling wine media. Factor screening for improving wine yeast selection. Borrull A; Poblet M; Rozès N Food Microbiol; 2015 Jun; 48():41-8. PubMed ID: 25790990 [TBL] [Abstract][Full Text] [Related]
27. Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. Linder T World J Microbiol Biotechnol; 2018 Dec; 35(1):3. PubMed ID: 30547239 [TBL] [Abstract][Full Text] [Related]
28. Elicitation of Jerusalem artichoke (Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation. Ma C; Zhou D; Wang H; Han D; Wang Y; Yan X J Sci Food Agric; 2017 Jan; 97(1):88-94. PubMed ID: 26917428 [TBL] [Abstract][Full Text] [Related]
29. Iron enriched yeast biomass--a promising mineral feed supplement. Pas M; Piskur B; Sustaric M; Raspor P Bioresour Technol; 2007 May; 98(8):1622-8. PubMed ID: 16935492 [TBL] [Abstract][Full Text] [Related]
30. Use of several waste substrates for carotenoid-rich yeast biomass production. Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756 [TBL] [Abstract][Full Text] [Related]
31. Studies on protein production by yeasts. IV. Incremental feeding modulus. El-Sawy M; Mahmoud SA; Abdel-Hafez AM; Ramadan EM Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(7):648-54. PubMed ID: 610228 [TBL] [Abstract][Full Text] [Related]
32. [Single cell protein. I -- Introduction, the use of algae, fungi and yeasts for SCP production (author's transl)]. Akman M Mikrobiyol Bul; 1980 Apr; 14(2):141-55. PubMed ID: 7464582 [TBL] [Abstract][Full Text] [Related]
33. [Effect of raised temperatures on the protein and RNA synthesis rate in yeasts]. Pozmogova IN; Khovrychev MP; Korolev PN Mikrobiologiia; 1979; 48(1):39-43. PubMed ID: 370520 [TBL] [Abstract][Full Text] [Related]
34. Ethanol production from henequen (Agave fourcroydes Lem.) juice and molasses by a mixture of two yeasts. Cáceres-Farfán M; Lappe P; Larqué-Saavedra A; Magdub-Méndez A; Barahona-Pérez L Bioresour Technol; 2008 Dec; 99(18):9036-9. PubMed ID: 18524573 [TBL] [Abstract][Full Text] [Related]
35. Production of arabitol from glycerol: strain screening and study of factors affecting production yield. Koganti S; Kuo TM; Kurtzman CP; Smith N; Ju LK Appl Microbiol Biotechnol; 2011 Apr; 90(1):257-67. PubMed ID: 21127857 [TBL] [Abstract][Full Text] [Related]
36. Study of starch degradation by yeasts during fermentation for using in animal feed. Alonso S; Arévalo-Villena M; Ubeda J; Briones A Appl Biochem Biotechnol; 2010 Nov; 162(7):2058-66. PubMed ID: 20454868 [TBL] [Abstract][Full Text] [Related]
37. The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation. Tang W; Zhang S; Wang Q; Tan H; Zhao ZK Can J Microbiol; 2009 Sep; 55(9):1062-9. PubMed ID: 19898548 [TBL] [Abstract][Full Text] [Related]
38. Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis. Gao L; Chi Z; Sheng J; Ni X; Wang L Appl Microbiol Biotechnol; 2007 Dec; 77(4):825-32. PubMed ID: 17929010 [TBL] [Abstract][Full Text] [Related]
39. Antioxidant activity and cytotoxicity of Jerusalem artichoke tubers and leaves extract on HaCaT and BJ fibroblast cells. Nizioł-Łukaszewska Z; Furman-Toczek D; Zagórska-Dziok M Lipids Health Dis; 2018 Dec; 17(1):280. PubMed ID: 30537971 [TBL] [Abstract][Full Text] [Related]