These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 66139)

  • 41. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder.
    Luppi PH; Clément O; Sapin E; Gervasoni D; Peyron C; Léger L; Salvert D; Fort P
    Sleep Med Rev; 2011 Jun; 15(3):153-63. PubMed ID: 21115377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Presynaptic inhibition of tooth pulp afferents in the trigeminal nucleus during REM sleep.
    Satoh T; Harada Y; Watabe K; Eguchi K; Hotta F
    Sleep; 1980; 2(3):363-66. PubMed ID: 7403738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sleep and EEG disturbances in a rat neurological mutant (taiep) with immobility episodes: a model of narcolepsy-cataplexy.
    Prieto GJ; Urbá-Holmgren R; Holmgren B
    Electroencephalogr Clin Neurophysiol; 1991 Aug; 79(2):141-7. PubMed ID: 1713828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First rapid eye movement sleep periods and sleep-onset rapid eye movement periods in sleep-stage sequencing of hypersomnias.
    Drakatos P; Kosky CA; Higgins SE; Muza RT; Williams AJ; Leschziner GD
    Sleep Med; 2013 Sep; 14(9):897-901. PubMed ID: 23764105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats.
    Takakusaki K; Saitoh K; Harada H; Okumura T; Sakamoto T
    Neuroscience; 2004; 124(1):207-20. PubMed ID: 14960352
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chronic vagus nerve stimulation improves alertness and reduces rapid eye movement sleep in patients affected by refractory epilepsy.
    Rizzo P; Beelke M; De Carli F; Canovaro P; Nobili L; Robert A; Tanganelli P; Regesta G; Ferrillo F
    Sleep; 2003 Aug; 26(5):607-11. PubMed ID: 12938816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Hypnotic effect of serotonin administered in the vago-aortic afferent pathway].
    Sayadi AK; Gaudin-Chazal G; Seyfritz N; Puizillout JJ
    C R Seances Acad Sci D; 1980 Oct; 291(6):569-72. PubMed ID: 6780217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nocturnal sleep of narcoleptic patients: revisited.
    Montplaisir J; Godbout R
    Sleep; 1986; 9(1 Pt 2):159-61. PubMed ID: 3704436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elimination of paradoxical sleep by lesions of the pontine gigantocellular tegmental field in the cat.
    Jones BE
    Neurosci Lett; 1979 Aug; 13(3):285-93. PubMed ID: 231225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of motoneuron function and muscle tone during REM sleep, REM sleep behavior disorder and cataplexy/narcolepsy.
    Peever J
    Arch Ital Biol; 2011 Dec; 149(4):454-66. PubMed ID: 22205591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of potassium ion activity in cat hippocampus during REM sleep.
    Satoh T; Yokota T; Kitayama S
    Sleep; 1991 Feb; 14(1):2-4. PubMed ID: 1811315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pupillometric assessment of excessive daytime sleepiness in narcolepsy-cataplexy.
    Newman J; Broughton R
    Sleep; 1991 Apr; 14(2):121-9. PubMed ID: 1866526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vago-vagal reflex relaxation of the stomach in the cat.
    Jansson G
    Acta Physiol Scand; 1969; 75(1):245-52. PubMed ID: 5785146
    [No Abstract]   [Full Text] [Related]  

  • 55. Motor disturbances during non-REM and REM sleep in narcolepsy-cataplexy: a video-polysomnographic analysis.
    Frauscher B; Gschliesser V; Brandauer E; Schönwald SV; Falkenstetter T; Ehrmann L; Tokmak I; Poewe W; Högl B
    J Sleep Res; 2011 Dec; 20(4):514-21. PubMed ID: 21261767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sleep deprivation in narcoleptic subjects: effect on sleep stages and EEG power density.
    Tafti M; Rondouin G; Besset A; Billiard M
    Electroencephalogr Clin Neurophysiol; 1992 Dec; 83(6):339-49. PubMed ID: 1281079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sleep-wake abnormalities in narcolepsy.
    Zorick F; Roehrs T; Wittig R; Lamphere J; Sicklesteel J; Roth T
    Sleep; 1986; 9(1 Pt 2):189-93. PubMed ID: 3704441
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sleep studies on canine narcolepsy: pattern and cycle comparisons between affected and normal dogs.
    Mitler MM; Dement WC
    Electroencephalogr Clin Neurophysiol; 1977 Nov; 43(5):691-9. PubMed ID: 72649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facilitatory forebrain influence on cardiac component of baroreceptor reflexes.
    Klevans LR; Gebber GL
    Am J Physiol; 1970 Nov; 219(5):1235-41. PubMed ID: 5473103
    [No Abstract]   [Full Text] [Related]  

  • 60. Vasoactive intestinal polypeptide (VIP) and cerebrospinal fluid (CSF) of sleep-deprived cats restores REM sleep in insomniac recipients.
    Prospéro-Garcia O; Morales M; Arankowsky-Sandoval G; Drucker-Colin R
    Brain Res; 1986 Oct; 385(1):169-73. PubMed ID: 2945620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.