These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6614175)

  • 1. Intracellular Cl- activity of the proximal tubule of Triturus kidney: dependence on extracellular ionic composition and transmembrane potential.
    Yoshitomi K; Hoshi T
    Am J Physiol; 1983 Sep; 245(3):F359-66. PubMed ID: 6614175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: dependence on bicarbonate and sodium.
    Guggino WB; London R; Boulpaep EL; Giebisch G
    J Membr Biol; 1983; 71(3):227-40. PubMed ID: 6302263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular chloride activity of rabbit proximal straight tubule perfused in vitro.
    Ishibashi K; Sasaki S; Yoshiyama N
    Am J Physiol; 1988 Jul; 255(1 Pt 2):F49-56. PubMed ID: 3394812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Cl- activity in rabbit proximal convoluted tubule perfused in vitro: regulation by sodium and effects of anion transport inhibitors.
    Ishibashi K
    Jpn J Physiol; 1993; 43(5):585-97. PubMed ID: 8145399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcellular chloride pathways in ambystoma proximal tubule.
    Abdulnour-Nakhoul S; Boulpaep EL
    J Membr Biol; 1998 Nov; 166(1):15-35. PubMed ID: 9784583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of diffusible ions on the peritubular membrane potential of proximal tubular cells in perfused bullfrog kidneys.
    Kubota T; Honda M; Kotera K; Fujimoto M
    Jpn J Physiol; 1980; 30(5):775-90. PubMed ID: 6970293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloride distribution in the proximal convoluted tubule of Necturus kidney.
    Edelman A; Bouthier M; Anagnostopoulos T
    J Membr Biol; 1981; 62(1-2):7-17. PubMed ID: 7277477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes.
    Alvarez-Leefmans FJ; Gamiño SM; Giraldez F; Noguerón I
    J Physiol; 1988 Dec; 406():225-46. PubMed ID: 3254412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride transport across the basolateral membrane of rabbit proximal convoluted tubules.
    Ishibashi K; Rector FC; Berry CA
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1569-78. PubMed ID: 2360655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in Triturus proximal tubule.
    Hoshi T; Sudo K; Suzuki Y
    Biochim Biophys Acta; 1976 Oct; 448(3):492-504. PubMed ID: 974144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic conductive properties of rabbit proximal straight tubule basolateral membrane.
    Welling PA; O'Neil RG
    Am J Physiol; 1990 Apr; 258(4 Pt 2):F940-50. PubMed ID: 2330987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of Cl- -OH- or Cl- -HCO3- exchange in the rabbit renal proximal tubule.
    Schwartz GJ
    Am J Physiol; 1983 Oct; 245(4):F462-9. PubMed ID: 6624909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumen-positive chloride transport potential in the early distal tubule of Triturus kidney: its absolute dependence on the presence of Na+ and K+ in the luminal fluid.
    Hoshi T; Kuramochi G; Yoshitomi K
    Jpn J Physiol; 1983; 33(5):855-61. PubMed ID: 6321832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process.
    Alpern RJ
    J Gen Physiol; 1985 Nov; 86(5):613-36. PubMed ID: 2999293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transcellular route for Na-coupled Cl transport in secreting pancreatic acinar cells.
    O'Doherty J; Stark RJ
    Am J Physiol; 1983 Oct; 245(4):G499-503. PubMed ID: 6624917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological study of L-lysine transport across Triturus proximal tubule: evidence for Na(+)-independent entry and Na(+)-dependent exit.
    Nunokawa T; Hoshi T
    Ren Physiol Biochem; 1990; 13(6):295-305. PubMed ID: 1701912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of membrane transport processes in renal cells, by means of liquid ion exchanger microelectrodes.
    Anagnostopoulos T
    J Physiol (Paris); 1984; 79(6):401-5. PubMed ID: 6100308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depolarization-induced alkalinization in proximal tubules. I. Characteristics and dependence on Na+.
    Siebens AW; Boron WF
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F342-53. PubMed ID: 2916666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Furosemide-sensitive transport of chloride through the apical membrane of cells of the proximal tubule of the triton kidney].
    Pokrovskiĭ VG
    Fiziol Zh SSSR Im I M Sechenova; 1985 Oct; 71(10):1293-6. PubMed ID: 4065369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule.
    Cardinal J; Lapointe JY; Laprade R
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F352-64. PubMed ID: 6205598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.