These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 6614452)
1. Measurement of ferredoxin-dependent sulfite reductase activity in crude extracts from leaves using O-acetyl-L-serine sulfhydrylase in a coupled assay system to measure the sulfide formed. von Arb C; Brunold C Anal Biochem; 1983 May; 131(1):198-204. PubMed ID: 6614452 [TBL] [Abstract][Full Text] [Related]
2. A novel in-gel assay and an improved kinetic assay for determining in vitro sulfite reductase activity in plants. Brychkova G; Yarmolinsky D; Ventura Y; Sagi M Plant Cell Physiol; 2012 Aug; 53(8):1507-16. PubMed ID: 22685081 [TBL] [Abstract][Full Text] [Related]
3. Occurrence of transsulfuration in synthesis of L-homocysteine in an extremely thermophilic bacterium, Thermus thermophilus HB8. Yamagata S; Ichioka K; Goto K; Mizuno Y; Iwama T J Bacteriol; 2001 Mar; 183(6):2086-92. PubMed ID: 11222609 [TBL] [Abstract][Full Text] [Related]
4. NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin. Saitoh T; Ikegami T; Nakayama M; Teshima K; Akutsu H; Hase T J Biol Chem; 2006 Apr; 281(15):10482-8. PubMed ID: 16469743 [TBL] [Abstract][Full Text] [Related]
5. Redefining reductive sulfate assimilation in higher plants: a role for APS reductase, a new member of the thioredoxin superfamily? Wray JL; Campbell EI; Roberts MA; Gutierrez-Marcos JF Chem Biol Interact; 1998 Feb; 109(1-3):153-67. PubMed ID: 9566743 [TBL] [Abstract][Full Text] [Related]
6. Nitrite and hydroxylamine reduction in higher plants. Fractionation, electron donor and substrate specificity of leaf enzymes, principally from vegetable marrow (Cucurbita pepo L.). Hucklesby DP; Hewitt EJ Biochem J; 1970 Oct; 119(4):615-27. PubMed ID: 4395427 [TBL] [Abstract][Full Text] [Related]
7. Non-radioactive adenosine 5'-phosphosulfate sulfotransferase assay by coupling with sulfite reductase and O-acetylserine(thiol)lyase. Ara T; Sekiya J Biosci Biotechnol Biochem; 1997 Apr; 61(4):621-4. PubMed ID: 9145521 [TBL] [Abstract][Full Text] [Related]
8. Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Krueger RJ; Siegel LM Biochemistry; 1982 Jun; 21(12):2892-904. PubMed ID: 7104302 [TBL] [Abstract][Full Text] [Related]
9. Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. Nakayama M; Akashi T; Hase T J Inorg Biochem; 2000 Nov; 82(1-4):27-32. PubMed ID: 11132635 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of ferredoxin-sulfite reductase from turnip (Brassica rapa) leaves and comparison of properties with ferredoxin-sulfite reductase from turnip roots. Takahashi S; Yip WC; Tamura G Biosci Biotechnol Biochem; 1997 Sep; 61(9):1486-90. PubMed ID: 9339549 [TBL] [Abstract][Full Text] [Related]
11. Oxidation-reduction properties of maize ferredoxin: sulfite oxidoreductase. Hirasawa M; Nakayama M; Hase T; Knaff DB Biochim Biophys Acta; 2004 Feb; 1608(2-3):140-8. PubMed ID: 14871491 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Boll M; Fuchs G Eur J Biochem; 1998 Feb; 251(3):946-54. PubMed ID: 9490071 [TBL] [Abstract][Full Text] [Related]
14. The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Joy KW; Hageman RH Biochem J; 1966 Jul; 100(1):263-73. PubMed ID: 4381617 [TBL] [Abstract][Full Text] [Related]
15. Studies of l-Cysteine Biosynthetic Enzymes in Phaseolus vulgaris L. Smith IK Plant Physiol; 1972 Oct; 50(4):477-9. PubMed ID: 16658199 [TBL] [Abstract][Full Text] [Related]
16. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. Li ZG Methods Enzymol; 2015; 555():253-69. PubMed ID: 25747484 [TBL] [Abstract][Full Text] [Related]
17. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans. Sugio T; Katagiri T; Moriyama M; Zhèn YL; Inagaki K; Tano T Appl Environ Microbiol; 1988 Jan; 54(1):153-7. PubMed ID: 3345075 [TBL] [Abstract][Full Text] [Related]
18. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914 [TBL] [Abstract][Full Text] [Related]
19. Determination of Enzymes Associated with Sulfite Toxicity in Plants: Kinetic Assays for SO, APR, SiR, and In-Gel SiR Activity. Brychkova G; Kurmanbayeva A; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M Methods Mol Biol; 2017; 1631():229-251. PubMed ID: 28735401 [TBL] [Abstract][Full Text] [Related]
20. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase. Hallenbeck PC; Clark MA; Barrett EL J Bacteriol; 1989 Jun; 171(6):3008-15. PubMed ID: 2656637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]