These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 6614925)
21. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme. Ray S; Sarkar D; Ray M Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922 [TBL] [Abstract][Full Text] [Related]
22. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal. Cottingham IR; Austin AJ; Slabas AR Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276 [TBL] [Abstract][Full Text] [Related]
23. Functional role of arginine residues in glutamic acid decarboxylase from brain and bacteria. Tunnicliff G; Ngo TT Experientia; 1978 Aug; 34(8):989-90. PubMed ID: 359344 [TBL] [Abstract][Full Text] [Related]
24. Identification of essential arginine residue(s) for Mg-ATP binding of human argininosuccinate synthetase. Isashiki Y; Noda T; Kobayashi K; Sase M; Saheki T; Titani K Protein Seq Data Anal; 1989 Jul; 2(4):283-7. PubMed ID: 2788888 [TBL] [Abstract][Full Text] [Related]
25. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding. Adak S; Mazumder A; Banerjee RK Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798 [TBL] [Abstract][Full Text] [Related]
26. Chemical modification of arginine residues of porcine muscle acylphosphatase. Tamura T; Mizuno Y; Shiokawa H Biochim Biophys Acta; 1986 Mar; 870(2):234-41. PubMed ID: 3006778 [TBL] [Abstract][Full Text] [Related]
27. Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase. Ghosh M; Datta AK Biochem J; 1994 Mar; 298 ( Pt 2)(Pt 2):295-301. PubMed ID: 8135734 [TBL] [Abstract][Full Text] [Related]
28. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase. Wong SS; Wong LJ Biochim Biophys Acta; 1981 Jul; 660(1):142-7. PubMed ID: 6268170 [TBL] [Abstract][Full Text] [Related]
29. Inactivation of mevalonate 5-diphosphate decarboxylase by phosphorothioate analogues of ATP. Jabalquinto AM; Cardemil E Biochem Int; 1988 May; 16(5):791-7. PubMed ID: 3421980 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of rat liver mevalonate pyrophosphate decarboxylase and mevalonate phosphate kinase by phenyl and phenolic compounds. Shama Bhat C; Ramasarma T Biochem J; 1979 Jul; 181(1):143-51. PubMed ID: 226078 [TBL] [Abstract][Full Text] [Related]
31. Purification of rat liver mevalonate pyrophosphate decarboxylase. Toth MJ; Huwyler L; Park J Prep Biochem Biotechnol; 1996 Feb; 26(1):47-51. PubMed ID: 8744421 [TBL] [Abstract][Full Text] [Related]
33. Evidence for arginine residues in the immunoglobulin-binding sites of human Clq. Comis A; Easterbrook-Smith SB Biochim Biophys Acta; 1985 Sep; 842(1):45-51. PubMed ID: 3876114 [TBL] [Abstract][Full Text] [Related]
34. Chemical modification of a functional arginyl residue (Arg 292) of mitochondrial aspartate aminotransferase. Identification as the binding site for the distal carboxylate group of the substrate. Sandmeier E; Christen P J Biol Chem; 1982 Jun; 257(12):6745-50. PubMed ID: 7085600 [TBL] [Abstract][Full Text] [Related]
35. Functional residues at the active site of horse liver phosphopantothenoylcysteine decarboxylase. Scandurra R; Consalvi V; Politi L; Gallina C FEBS Lett; 1988 Apr; 231(1):192-6. PubMed ID: 3360124 [TBL] [Abstract][Full Text] [Related]
36. Inactivation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by phenylglyoxal. Evidence for essential arginine residues. Rider MH; Hue L Eur J Biochem; 1992 Aug; 207(3):967-72. PubMed ID: 1323462 [TBL] [Abstract][Full Text] [Related]
37. Essential arginyl residues in mitochondrial adenosine triphosphatase. Marcus F; Schuster SM; Lardy HA J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162 [TBL] [Abstract][Full Text] [Related]
38. Changes in chick liver and brain mevalonate kinase, mevalonate-5-phosphate kinase and mevalonate-5-pyrophosphate decarboxylase during development. Gonzalez-Pacanowska D; Marco C; Garcia-Martinez J; Garcia-Peregrin E Int J Biochem; 1984; 16(7):845-7. PubMed ID: 6088320 [TBL] [Abstract][Full Text] [Related]
39. Modification of arginine residues at the substrate binding site of yeast glutathione reductase. Pandey A; Iyengar L Indian J Biochem Biophys; 1998 Jun; 35(3):157-60. PubMed ID: 9803664 [TBL] [Abstract][Full Text] [Related]
40. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents. Zaki L; Julien T Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]