BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6615789)

  • 1. Synthesis and properties of radioiodinated phospholipid analogues that spontaneously undergo vesicle-vesicle and vesicle-cell transfer.
    Schroit AJ; Madsen JW
    Biochemistry; 1983 Jul; 22(15):3617-23. PubMed ID: 6615789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of a nonexchangeable radioiodinated phospholipid.
    Schroit AJ
    Biochemistry; 1982 Oct; 21(21):5323-8. PubMed ID: 7171561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins.
    Schroit AJ; Madsen J; Ruoho AE
    Biochemistry; 1987 Apr; 26(7):1812-9. PubMed ID: 3593693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogues between vesicle populations.
    Pagano RE; Martin OC; Schroit AJ; Struck DK
    Biochemistry; 1981 Aug; 20(17):4920-7. PubMed ID: 7295659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new fluorimetric method to measure protein-catalyzed phospholipid transfer using 1-acyl-2-parinaroylphosphatidylcholine.
    Somerharju P; Brockerhoff H; Wirtz KW
    Biochim Biophys Acta; 1981 Dec; 649(3):521-8. PubMed ID: 7317416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid peroxidation and phospholipase A2 activity in liposomes composed of unsaturated phospholipids: a structural basis for enzyme activation.
    Sevanian A; Wratten ML; McLeod LL; Kim E
    Biochim Biophys Acta; 1988 Aug; 961(3):316-27. PubMed ID: 3401498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of acceptor membrane phosphatidylcholine on the catalytic activity of bovine liver phosphatidylcholine transfer protein.
    Runquist EA; Helmkamp GM
    Biochim Biophys Acta; 1988 May; 940(1):21-32. PubMed ID: 3284590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium/phosphate-induced immobilization of fluorescent phosphatidylserine in synthetic bilayer membranes: inhibition of lipid transfer between vesicles.
    Tanaka Y; Schroit AJ
    Biochemistry; 1986 Apr; 25(8):2141-8. PubMed ID: 3707938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-catalyzed phospholipid exchange between gel and liquid-crystalline phospholipid vesicles.
    Kasper AM; Helmkamp GM
    Biochemistry; 1981 Jan; 20(1):146-51. PubMed ID: 7470465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial catalysis by phospholipase A2: substrate specificity in vesicles.
    Ghomashchi F; Yu BZ; Berg O; Jain MK; Gelb MH
    Biochemistry; 1991 Jul; 30(29):7318-29. PubMed ID: 1854740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of phospholipids around gramicidin and D-beta-hydroxybutyrate dehydrogenase as measured by resonance energy transfer.
    Wang S; Martin E; Cimino J; Omann G; Glaser M
    Biochemistry; 1988 Mar; 27(6):2033-9. PubMed ID: 2454133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae.
    Szolderits G; Hermetter A; Paltauf F; Daum G
    Biochim Biophys Acta; 1989 Nov; 986(2):301-9. PubMed ID: 2686754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced interfacial catalysis and hydrolytic specificity of phospholipase A2 toward peroxidized phosphatidylcholine vesicles.
    Salgo MG; Corongiu FP; Sevanian A
    Arch Biochem Biophys; 1993 Jul; 304(1):123-32. PubMed ID: 8323278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylcholine activation of bacterial phosphatidylinositol-specific phospholipase C toward PI vesicles.
    Qian X; Zhou C; Roberts MF
    Biochemistry; 1998 May; 37(18):6513-22. PubMed ID: 9572869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidation and phospholipase A2 hydrolytic susceptibility of liposomes consisting of mixed species of phosphatidylcholine and phosphatidylethanolamine.
    Salgo MG; Corongiu FP; Sevanian A
    Biochim Biophys Acta; 1992 Jul; 1127(2):131-40. PubMed ID: 1643097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid transfer between vesicles. Dependence on presence of cytochrome P-450 and phosphatidylcholine-phosphatidylethanolamine ratio.
    Bösterling B; Trudell JR
    Biochim Biophys Acta; 1982 Jul; 689(1):155-60. PubMed ID: 6285973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length.
    Homan R; Pownall HJ
    Biochim Biophys Acta; 1988 Feb; 938(2):155-66. PubMed ID: 3342229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylcholine exchange protein catalyzes the net transfer of phosphatidylcholine to model membranes.
    Wirtz KW; Devaux PF; Bienvenue A
    Biochemistry; 1980 Jul; 19(14):3395-9. PubMed ID: 6250569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid topology and flip-flop in intestinal brush-border membrane.
    Barsukov LI; Bergelson LD; Spiess M; Hauser H; Semenza G
    Biochim Biophys Acta; 1986 Nov; 862(1):87-99. PubMed ID: 3768371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles. Fluorescence studies using carbazole-labeled and brominated phospholipids.
    Silvius JR
    Biochemistry; 1990 Mar; 29(12):2930-8. PubMed ID: 2337575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.