These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6615805)

  • 1. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of anaerobic glucose metabolism and lactate transport in Staphylococcus aureus cells.
    Ezra FS; Lucas DS; Mustacich RV; Russell AF
    Biochemistry; 1983 Aug; 22(16):3841-9. PubMed ID: 6615805
    [No Abstract]   [Full Text] [Related]  

  • 2. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol.
    Darling TN; Davis DG; London RE; Blum JJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7129-33. PubMed ID: 3478686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose metabolism of adult Schistosoma japonicum as revealed by nuclear magnetic resonance spectroscopy with D-[13C6]glucose.
    Kawanaka M; Matsushita K; Kato K; Ohsaka A
    Physiol Chem Phys Med NMR; 1989; 21(1):5-12. PubMed ID: 2616648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton correlation nuclear magnetic resonance study of metabolic regulations and pyruvate transport in anaerobic Escherichia coli cells.
    Ogino T; Arata Y; Fujiwara S
    Biochemistry; 1980 Aug; 19(16):3684-91. PubMed ID: 6996710
    [No Abstract]   [Full Text] [Related]  

  • 5. Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus.
    Marshall DD; Sadykov MR; Thomas VC; Bayles KW; Powers R
    J Proteome Res; 2016 Apr; 15(4):1205-12. PubMed ID: 26975873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies.
    Ferreira MT; Manso AS; Gaspar P; Pinho MG; Neves AR
    PLoS One; 2013; 8(3):e58277. PubMed ID: 23472168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential utilization of lactate in neonatal dog brain: in vivo and in vitro proton NMR study.
    Young RS; Petroff OA; Chen B; Aquila WJ; Gore JC
    Biol Neonate; 1991; 59(1):46-53. PubMed ID: 1901734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis.
    Chapman A; Linstead DJ; Lloyd D; Williams J
    FEBS Lett; 1985 Oct; 191(2):287-92. PubMed ID: 3876951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate metabolism in Halobacterium salinarium studied by intracellular 13C nuclear magnetic resonance spectroscopy.
    Bhaumik SR; Sonawat HM
    J Bacteriol; 1994 Apr; 176(8):2172-6. PubMed ID: 8157586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose utilization and lactate production by Helicobacter pylori.
    Mendz GL; Hazell SL; Burns BP
    J Gen Microbiol; 1993 Dec; 139(12):3023-8. PubMed ID: 8126428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis.
    Sun JL; Zhang SK; Chen JY; Han BZ
    Can J Microbiol; 2012 Jun; 58(6):709-18. PubMed ID: 22571732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance studies of human brain in vivo: anatomy, function, and metabolism.
    Frahm J
    Adv Exp Med Biol; 1993; 333():257-71. PubMed ID: 8395758
    [No Abstract]   [Full Text] [Related]  

  • 13. Intrinsic insensitivity to cadmium of the L-lactate oxidizing system in staphylococcoccus aureus.
    Tynecka Z; Malm A
    FEMS Microbiol Lett; 1995 Jun; 129(1):11-5. PubMed ID: 7781984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo nuclear magnetic resonance spectroscopy applied to medicine.
    Allen PS
    Can Assoc Radiol J; 1990 Feb; 41(1):39-44. PubMed ID: 2155687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.
    Bouzier-Sore AK; Voisin P; Canioni P; Magistretti PJ; Pellerin L
    J Cereb Blood Flow Metab; 2003 Nov; 23(11):1298-306. PubMed ID: 14600437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR monitoring of the anaerobic metabolism of frog muscle at rest.
    Gussoni M; Giuliani AM; Ripamonti A; Boicelli CA
    Physiol Chem Phys Med NMR; 1990; 22(4):233-40. PubMed ID: 2101936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Resonance Spectroscopy to Study Glycolytic Metabolism During Autophagy.
    Chung YL; Leach MO; Eykyn TR
    Methods Enzymol; 2017; 588():133-153. PubMed ID: 28237097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton correlation nuclear magnetic resonance study of anaerobic metabolism of Escherichia coli.
    Ogino T; Arata Y; Fujiwara S; Shoun H; Beppu T
    Biochemistry; 1978 Oct; 17(22):4742-5. PubMed ID: 365221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular pH on lactate efflux from frog sartorius muscle.
    Seo Y
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C175-81. PubMed ID: 6332541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic gene expression in Staphylococcus aureus.
    Fuchs S; Pané-Farré J; Kohler C; Hecker M; Engelmann S
    J Bacteriol; 2007 Jun; 189(11):4275-89. PubMed ID: 17384184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.