These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6615888)

  • 1. Detection of nonenzymatic browning products in the human lens.
    Monnier VM; Cerami A
    Biochim Biophys Acta; 1983 Oct; 760(1):97-103. PubMed ID: 6615888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonenzymatic glycosylation of bovine lens crystallins. Effect of aging.
    Chiou SH; Chylack LT; Tung WH; Bunn HF
    J Biol Chem; 1981 May; 256(10):5176-80. PubMed ID: 7228874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins.
    Monnier VM; Cerami A
    Science; 1981 Jan; 211(4481):491-3. PubMed ID: 6779377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of ascorbic acid in senile cataract.
    Bensch KG; Fleming JE; Lohmann W
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7193-6. PubMed ID: 3864154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts.
    Lyons TJ; Silvestri G; Dunn JA; Dyer DG; Baynes JW
    Diabetes; 1991 Aug; 40(8):1010-5. PubMed ID: 1907246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis.
    Nagaraj RH; Sell DR; Prabhakaram M; Ortwerth BJ; Monnier VM
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10257-61. PubMed ID: 1946446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid-modified calf lens proteins: evidence for ascorbic acid glycation during cataract formation.
    Cheng R; Lin B; Lee KW; Ortwerth BJ
    Biochim Biophys Acta; 2001 Jul; 1537(1):14-26. PubMed ID: 11476959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-enzymatic glycosylation in human diabetic lens crystallins.
    Liang JN; Hershorin LL; Chylack LT
    Diabetologia; 1986 Apr; 29(4):225-8. PubMed ID: 3710014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis.
    Tessier F; Obrenovich M; Monnier VM
    J Biol Chem; 1999 Jul; 274(30):20796-804. PubMed ID: 10409619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The presence of a glucose-derived Maillard reaction product in the human lens.
    Nagaraj RH; Sady C
    FEBS Lett; 1996 Mar; 382(3):234-8. PubMed ID: 8605976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of UVA light on the anaerobic oxidation of ascorbic acid and the glycation of lens proteins.
    Ortwerth BJ; Chemoganskiy V; Mossine VV; Olesen PR
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3094-102. PubMed ID: 12824256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus.
    Cerami A; Stevens VJ; Monnier VM
    Metabolism; 1979 Apr; 28(4 Suppl 1):431-7. PubMed ID: 122296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1992 Mar; 1116(1):34-42. PubMed ID: 1540622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photooxidation of the nonenzymatic browning products in calf lens alpha-crystallin.
    Liang JN
    Ophthalmic Res; 1991; 23(5):259-64. PubMed ID: 1784457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The decrease of free epsilon-amino groups in senile and diabetic cataracts.
    Simonelli F; Cotticelli L; Iura A; Manna C; Nesti A; Rinaldi E; Auricchio G
    Ophthalmic Res; 1990; 22(3):160-5. PubMed ID: 2385432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.