BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 6615981)

  • 1. In vitro corrosion study of porous metal fibre coatings for bone ingrowth.
    Ducheyne P
    Biomaterials; 1983 Jul; 4(3):185-91. PubMed ID: 6615981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrosion and surface modification on biocompatible metals: A review.
    Asri RIM; Harun WSW; Samykano M; Lah NAC; Ghani SAC; Tarlochan F; Raza MR
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1261-1274. PubMed ID: 28532004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility.
    Peng C; Izawa T; Zhu L; Kuroda K; Okido M
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.
    Kao WH; Su YL; Horng JH; Zhang KX
    J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth.
    Pilliar RM
    Clin Orthop Relat Res; 1983 Jun; (176):42-51. PubMed ID: 6851341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC; Davis EE
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of metals used in implants.
    Gotman I
    J Endourol; 1997 Dec; 11(6):383-9. PubMed ID: 9440845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry of galvanic couples between carbon and common metallic biomaterials in the presence of crevices.
    Silva RA; Barbosa MA; Jenkins GM; Sutherland I
    Biomaterials; 1990 Jul; 11(5):336-40. PubMed ID: 2400800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.
    Morais S; Dias N; Sousa JP; Fernandes MH; Carvalho GS
    J Biomed Mater Res; 1999 Feb; 44(2):176-90. PubMed ID: 10397919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: compositional, electrochemical corrosion studies and microbiological assay.
    Floroian L; Samoila C; Badea M; Munteanu D; Ristoscu C; Sima F; Negut I; Chifiriuc MC; Mihailescu IN
    J Mater Sci Mater Med; 2015 Jun; 26(6):195. PubMed ID: 26085116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galvanic couples of 316L steel with Ti and ion plated Ti and TiN coatings in Ringer's solutions.
    Gluszek J; Jedrkowiak J; Markowski J; Masalski J
    Biomaterials; 1990 Jul; 11(5):330-5. PubMed ID: 2400799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study of bone regeneration in porous metal implants].
    Alnot JY; Aubriot JH; Deburge A; Desche P; Got C; Masse Y; Patel A
    Acta Orthop Belg; 1974; 40(5-6):766-70. PubMed ID: 4469738
    [No Abstract]   [Full Text] [Related]  

  • 14. An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces.
    Albrektsson T; Hansson HA
    Biomaterials; 1986 May; 7(3):201-5. PubMed ID: 3521751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys.
    Lemons JE; Niemann KM; Weiss AB
    J Biomed Mater Res; 1976 Jul; 10(4):549-53. PubMed ID: 947918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants.
    Ducheyne P; Hench LL; Kagan A; Martens M; Bursens A; Mulier JC
    J Biomed Mater Res; 1980 May; 14(3):225-37. PubMed ID: 7364787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.
    Mueller Y; Tognini R; Mayer J; Virtanen S
    J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro corrosion analysis in low-intensity, pulsed ultrasound.
    Pittner DE; Levin L; Archdeacon MT
    Am J Orthop (Belle Mead NJ); 2008 Feb; 37(2):E32-7. PubMed ID: 18401492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osseointegration of metallic implants. I. Light microscopy in the rabbit.
    Linder L
    Acta Orthop Scand; 1989 Apr; 60(2):129-34. PubMed ID: 2658464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.