These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6615992)

  • 1. Analysis of residual stress in failed T-28 femoral stems.
    Stroud RD; Brown SA; Shackelford JF
    Biomater Med Devices Artif Organs; 1983; 11(1):13-20. PubMed ID: 6615992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads.
    Otani T; Whiteside LA; White SE
    J Biomed Mater Res; 1993 May; 27(5):575-85. PubMed ID: 8314810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component.
    Lewis JL; Askew MJ; Wixson RL; Kramer GM; Tarr RR
    J Bone Joint Surg Am; 1984 Feb; 66(2):280-6. PubMed ID: 6693456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual stress due to curing can initiate damage in porous bone cement: experimental and theoretical evidence.
    Lennon AB; Prendergast PJ
    J Biomech; 2002 Mar; 35(3):311-21. PubMed ID: 11858806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reporting the Fatigue Life of 316L Stainless Steel Locking Compression Plate Implants: The Role of the Femoral and Tibial Biomechanics During the Gait.
    Shaat M
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28787474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The influence of the elasticity module of the femoral shaft and neck of a total hip prosthesis on the distribution of stress in the femur ].
    Meunier A; Christel P; Sedel L; Witvoet J; Blanquaert D
    Int Orthop; 1990; 14(1):67-73. PubMed ID: 2341217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of variation of prosthesis size on cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    J Biomed Mater Res; 1994 Sep; 28(9):1055-60. PubMed ID: 7814433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments.
    Amjad K; Asquith D; Patterson EA; Sebastian CM; Wang WC
    R Soc Open Sci; 2017 Nov; 4(11):171100. PubMed ID: 29291095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strains and micromotions of press-fit femoral stem prostheses.
    Walker PS; Schneeweis D; Murphy S; Nelson P
    J Biomech; 1987; 20(7):693-702. PubMed ID: 3654667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual stress around the cortical surface in bovine femoral diaphysis.
    Yamada S; Tadano S
    J Biomech Eng; 2010 Apr; 132(4):044503. PubMed ID: 20387976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of variation of cement thickness on bone and cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    Iowa Orthop J; 1993; 13():155-9. PubMed ID: 7820736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical evaluation of hip cement spacer reinforcement with stainless steel Kirschner wires, titanium and carbon rods, and stainless steel mesh.
    Kaku N; Tabata T; Tsumura H
    Eur J Orthop Surg Traumatol; 2015 Apr; 25(3):489-96. PubMed ID: 25421639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires.
    Toribio J; Matos JC; González B; Escuadra J
    Materials (Basel); 2015 Nov; 8(11):7589-7597. PubMed ID: 28793661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of total hip arthroplasty cemented femoral stem surface finish, collar and cement thickness on load transfer to the femur.
    Ebramzadeh E; Sangiorgio SN; Longjohn DB; Buhari CF; Morrison BJ; Dorr LD
    J Appl Biomater Biomech; 2003; 1(1):76-83. PubMed ID: 20803475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.
    Rezaei F; Hassani K; Solhjoei N; Karimi A
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):569-80. PubMed ID: 26462678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of circular statistics in the study of crack distribution around cemented femoral components.
    Mann KA; Gupta S; Race A; Miller MA; Cleary RJ
    J Biomech; 2003 Aug; 36(8):1231-4. PubMed ID: 12831752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material optimisation of the femoral component of a hip prosthesis based on the fatigue notch fatigue approach.
    Hedia HS; Barton DC; Fisher J
    Biomed Mater Eng; 1997; 7(2):83-98. PubMed ID: 9262822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load transfer with the Austin Moore cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Orthop Res; 1993 Mar; 11(2):272-84. PubMed ID: 8483040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of press-fit femoral stems on strains in the femur. A photoelastic coating study.
    Zhou XM; Walker PS; Robertson DD
    J Arthroplasty; 1990 Mar; 5(1):71-82. PubMed ID: 2319252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.
    Ramos A; Simões JA
    J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.