These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6615993)

  • 41. A Corethane/polyester composite vascular prosthesis for vascular access. Comparison with expanded polytetrafluoroethylene grafts in a canine model.
    Wilson GJ; MacGregor DC; Bridgeman J; Weber BA; Binnington AG; Pinchuk L
    ASAIO J; 1995; 41(3):M728-34. PubMed ID: 8573903
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Small-caliber polyurethane and polytetrafluoroethylene grafts: a comparative study in a canine aortoiliac model.
    Brothers TE; Stanley JC; Burkel WE; Graham LM
    J Biomed Mater Res; 1990 Jun; 24(6):761-71. PubMed ID: 2361967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New prostheses for use in bypass grafts with special emphasis on polyurethanes.
    Tiwari A; Salacinski H; Seifalian AM; Hamilton G
    Cardiovasc Surg; 2002 Jun; 10(3):191-7. PubMed ID: 12044423
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small caliber vascular grafts. Part II: Polyurethanes revisited.
    Zdrahala RJ
    J Biomater Appl; 1996 Jul; 11(1):37-61. PubMed ID: 8872599
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Implantation of novel small-diameter polyurethane vascular prostheses interposed in canine femoral and carotid arteries.
    Karapinar K; Ulus AT; Tütün U; Aksöyek A; Apaydin N; Pamuk K; Can Z; Saritaş Z; Küçükay F; Arda K; Katircioğlu SF
    Eur Surg Res; 2004; 36(4):241-8. PubMed ID: 15263830
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of fibril length upon ePTFE graft healing and host modification of the implant.
    Hirabayashi K; Saitoh E; Ijima H; Takenawa T; Kodama M; Hori M
    J Biomed Mater Res; 1992 Nov; 26(11):1433-47. PubMed ID: 1447228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of porosity on small-diameter vascular graft healing.
    Contreras MA; Quist WC; Logerfo FW
    Microsurgery; 2000; 20(1):15-21. PubMed ID: 10617876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Development of artificial blood vessel suitable for cerebrovascular surgery: improvement in the mechanical properties].
    Miyamoto S
    Nihon Geka Hokan; 1991 Jan; 60(1):25-37. PubMed ID: 1819236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial and temporal changes in compliance following implantation of bioresorbable vascular grafts.
    Greisler HP; Joyce KA; Kim DU; Pham SM; Berceli SA; Borovetz HS
    J Biomed Mater Res; 1992 Nov; 26(11):1449-61. PubMed ID: 1447229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New prostheses for venous substitution.
    Kogel H; Vollmar JF; Proschek P
    J Cardiovasc Surg (Torino); 1991; 32(3):330-3. PubMed ID: 2055930
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved healing of small-caliber polytetrafluoroethylene vascular prostheses by increased hydrophilicity and by enlarged fibril length. An experimental study in rats.
    Stronck JW; van der Lei B; Wildevuur CR
    J Thorac Cardiovasc Surg; 1992 Jan; 103(1):146-52. PubMed ID: 1728701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Haemodynamic aspects of lower limb arterial reconstruction using Dacron and Goretex prostheses.
    Santiago EJ; Chatamra K; Taylor DE
    Ann R Coll Surg Engl; 1981 Jul; 63(4):253-6. PubMed ID: 6454376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neoendothelial healing of modified EPTFE grafts.
    Kodama M; Hirabayashi K
    ASAIO Trans; 1991; 37(3):M306-7. PubMed ID: 1751162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of node-fibril morphology on healing of high-porosity expanded polytetrafluoroethylene grafts.
    Miura H; Nishibe T; Yasuda K; Shimada T; Hazama K; Katoh H; Watanabe S; Okuda Y; Kumada T
    Eur Surg Res; 2002; 34(3):224-31. PubMed ID: 12077509
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Changes in biomechanical properties of biological and synthetic prostheses].
    Reichert V; Addili F; Schmitz-Rixen T
    Khirurgiia (Mosk); 1997; (4):29-35. PubMed ID: 9296999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of the deployment and healing of thin-walled expanded PTFE stented grafts and covered stents.
    White R; Kopchok G; Zalewski M; Ayres B; Wilson E; de Virgilio C; Donayre C
    Ann Vasc Surg; 1996 Jul; 10(4):336-46. PubMed ID: 8879388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental use of prosthetic grafts in microvascular surgery.
    Demiri EC; Iordanidis SL; Mantinaos CF
    Handchir Mikrochir Plast Chir; 1999 Mar; 31(2):102-6. PubMed ID: 10337554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segmental uterine horn replacement in the rat using a biodegradable microporous synthetic tube.
    Jonkman MF; Kauer FM; Nieuwenhuis P; Molenaar I
    Artif Organs; 1986 Dec; 10(6):475-80. PubMed ID: 3800704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Healing mechanisms of high-porosity PTFE grafts: significance of transmural structure.
    Tsuchida H; Wilson SE; Ishimaru S
    J Surg Res; 1997 Aug; 71(2):187-95. PubMed ID: 9299289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anastomotic tissue response associated with expanded polytetrafluoroethylene access grafts constructed by using nonpenetrating clips.
    Dal Ponte DB; Berman SS; Patula VB; Kleinert LB; Williams SK
    J Vasc Surg; 1999 Aug; 30(2):325-33. PubMed ID: 10436453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.