These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 661641)

  • 21. [Character of short-term changes in the total number of soil bacteria, including ammonifiers, during the growing season].
    Kutuzova RS
    Mikrobiologiia; 1979; 48(5):906-15. PubMed ID: 502912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Source specific fecal bacteria modeling using soil and water assessment tool model.
    Parajuli PB; Mankin KR; Barnes PL
    Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence of microorganisms capable of decomposing organic phosphorus compounds in two types of bottom sediments of the eutrophic lake Jeziorak.
    Strzelczyk E; Donderski W; Lewosz W
    Acta Microbiol Pol B; 1972; 4(3):101-10. PubMed ID: 4566842
    [No Abstract]   [Full Text] [Related]  

  • 24. [Survival capacity of genetically altered Escherichia coli strains. 2. Survival of pure cultures in different water and soil matrices].
    Dott W; Khoury N; Ankel-Fuchs D; Henninger W; Kämpfer P
    Zentralbl Hyg Umweltmed; 1991 Sep; 192(1):1-13. PubMed ID: 1953929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drivers of water quality in a large water storage reservoir during a period of extreme drawdown.
    Baldwin DS; Gigney H; Wilson JS; Watson G; Boulding AN
    Water Res; 2008 Dec; 42(19):4711-24. PubMed ID: 18804256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Bacterial count and vitamin B 12 content in active silt].
    Lazurkevich ZV; Bukh IG; Stoianova LV
    Mikrobiol Zh; 1967; 29(2):100-5. PubMed ID: 5618072
    [No Abstract]   [Full Text] [Related]  

  • 27. [Seasonal changes in the number of microorganisms in water and bottoms of some reservoirs near the Danube].
    Kutliev D
    Mikrobiol Zh; 1967; 29(4):351-2. PubMed ID: 5619962
    [No Abstract]   [Full Text] [Related]  

  • 28. [Effect of water expenditure in small rivers on the number of microorganisms].
    Reshetkova NB
    Mikrobiologiia; 1976; 45(6):1110-3. PubMed ID: 1012052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring of soil bacterial community and some inoculated bacteria after prescribed fire in microcosm.
    Song HG; Kim OS; Yoo JJ; Jeon SO; Hong SH; Lee DH; Ahn TS
    J Microbiol; 2004 Dec; 42(4):285-91. PubMed ID: 15650684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
    Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T
    Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Bacterial processes of the methane cycle in the bottom sediments of Baikal lake].
    Dagurova OP; Namsaraev BB; Kozyreva LP; Zemskaia TI; Dulov LE
    Mikrobiologiia; 2004; 73(2):248-57. PubMed ID: 15198038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Microorganisms of an acidotrophic lake].
    Rodina AG
    Mikrobiologiia; 1968; 37(1):154-9. PubMed ID: 5732043
    [No Abstract]   [Full Text] [Related]  

  • 33. [Microbial metabolism of the carbon and sulfur cycles in Shira Lake (Khakasia)].
    Pimenov NV; Rusanov II; Karnachuk OV; Rogozin DIu; Briantseva IA; Lunina ON; Iusupov SK; Parnachev VP; Ivanov MV
    Mikrobiologiia; 2003; 72(2):259-67. PubMed ID: 12751251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The classification and the monitoring of the state of mouth riverine and lacustrine ecosystems in lake Baikal based on the composition of local microbiocenoses and their activity].
    Maksimov VV; Shchetinina EV; Kraĭkivskaia OV; Maksimov VN; Maksimova EA
    Mikrobiologiia; 2002; 71(5):690-6. PubMed ID: 12449637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Calculating the number of methane forming bacteria on a medium containing molecular hydrogen].
    Beliaev SS
    Mikrobiologiia; 1974 Mar; 43(2):349-52. PubMed ID: 4597592
    [No Abstract]   [Full Text] [Related]  

  • 37. Degradation of gamm-BHC in simulated lake impoundments as affected by aeration.
    Newland LW; Chesters G; Lee GB
    J Water Pollut Control Fed; 1969 May; 41():Suppl:R174+. PubMed ID: 4183049
    [No Abstract]   [Full Text] [Related]  

  • 38. Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: application in a golf course (Girona, Spain).
    Candela L; Fabregat S; Josa A; Suriol J; Vigués N; Mas J
    Sci Total Environ; 2007 Mar; 374(1):26-35. PubMed ID: 17258287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Microbiological studies in the deepwater area of the Southern Caspian Sea].
    Salmanov MA
    Mikrobiologiia; 2006; 75(2):250-6. PubMed ID: 16758874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Evaluation of the immunofluorescence test in the diagnosis of botulinum toxin poisoning in humans and animals. II. Identification of Clostridium botulinum in the soil from the shores, bottom silt and water of the Konopno Lake, a source of infection of fish with Cl. botulinum E].
    Anusz Z; Mierzejewski J; Matras J; Skoczek A
    Przegl Epidemiol; 1974; 28(4):453-60. PubMed ID: 4614331
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.