BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6616477)

  • 1. Effect of retinoic acid on the growth and morphology of a prostatic adenocarcinoma cell line cloned for the retinoid inducibility of alkaline phosphatase.
    Reese DH; Gordon B; Gratzner HG; Claflin AJ; Malinin TI; Block NL; Politano VA
    Cancer Res; 1983 Nov; 43(11):5443-50. PubMed ID: 6616477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of growth, morphology, and alkaline phosphatase activity by butyrate and related short-chain fatty acids in the retinoid-responsive 9-1C rat prostatic adenocarcinoma cell.
    Reese DH; Gratzner HG; Block NL; Politano VA
    Cancer Res; 1985 May; 45(5):2308-13. PubMed ID: 3986774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of alkaline phosphatase activity in C3H10T1/2 cells: role of retinoic acid and cell density.
    Reese DH; Larsen RA; Hornicek FJ
    J Cell Physiol; 1992 May; 151(2):239-48. PubMed ID: 1572900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of sodium butyrate, dimethyl sulfoxide, and retinoic acid on membrane-associated antigen, enzymes, and glycoproteins of human rectal adenocarcinoma cells.
    Tsao D; Morita A; Bella A; Luu P; Kim YS
    Cancer Res; 1982 Mar; 42(3):1052-8. PubMed ID: 7059970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience with an animal model for the study of prostatic carcinoma.
    Lubaroff DM; Culp DA
    Trans Am Assoc Genitourin Surg; 1977; 69():72-7. PubMed ID: 617916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of retinoic acid and growth factors on osteoblastic markers and CD10/NEP activity in stromal-derived osteoblasts.
    Benayahu D; Fried A; Shamay A; Cunningham N; Blumberg S; Wientroub S
    J Cell Biochem; 1994 Sep; 56(1):62-73. PubMed ID: 7528753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid slows progression and promotes apoptosis of spontaneous prostate cancer.
    Huss WJ; Lai L; Barrios RJ; Hirschi KK; Greenberg NM
    Prostate; 2004 Oct; 61(2):142-52. PubMed ID: 15305337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual androgen sensitivity of the androgen-independent Dunning R-3327-G rat prostatic adenocarcinoma: androgen effect on tumor cell loss.
    Humphries JE; Isaacs JT
    Cancer Res; 1982 Aug; 42(8):3148-56. PubMed ID: 7093958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and morphological characterization of clonal AXC rat prostate cancer cells.
    Shain SA; Huot RI; Gorelic LS; Smith GC
    Cancer Res; 1984 May; 44(5):2033-42. PubMed ID: 6713398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell substratum modulates responses of preosteoblasts to retinoic acid.
    Traianedes K; Ng KW; Martin TJ; Findlay DM
    J Cell Physiol; 1993 Nov; 157(2):243-52. PubMed ID: 8227157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a cloned cell line R3327H-G8-A1 derived from the dunning R3327H rat adenocarcinoma.
    Sestili MA; Norris JS; Smith RG
    Cancer Res; 1983 May; 43(5):2167-75. PubMed ID: 6299542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel human cell culture model for the study of familial prostate cancer.
    Yasunaga Y; Nakamura K; Ewing CM; Isaacs WB; Hukku B; Rhim JS
    Cancer Res; 2001 Aug; 61(16):5969-73. PubMed ID: 11507036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and characterization of DP-153, a nontumorigenic prostatic cell line that undergoes malignant transformation by expression of dominant-negative transforming growth factor beta receptor type II.
    Song K; Cornelius SC; Danielpour D
    Cancer Res; 2003 Aug; 63(15):4358-67. PubMed ID: 12907605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometric analysis of R3327 rat prostate adenocarcinoma grown in vivo and in vitro.
    Claflin AJ; Pollack A; Malinin T; Block NL; Irvin GL
    J Natl Cancer Inst; 1982 Jul; 69(1):79-87. PubMed ID: 6954325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of retinoic acid-enhanced sialyltransferase activity and glycosylation of specific cell surface sialoglycoproteins with growth inhibition in a murine melanoma cell system.
    Lotan R; Lotan D; Meromsky L
    Cancer Res; 1984 Dec; 44(12 Pt 1):5805-12. PubMed ID: 6498840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of nontumorigenic and tumorigenic epithelial cell lines from rat dorsal-lateral prostate.
    Danielpour D; Kadomatsu K; Anzano MA; Smith JM; Sporn MB
    Cancer Res; 1994 Jul; 54(13):3413-21. PubMed ID: 8012960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of alkaline phosphatase expression in a neonatal rat clonal calvarial cell strain by retinoic acid.
    Ng KW; Gummer PR; Michelangeli VP; Bateman JF; Mascara T; Cole WG; Martin TJ
    J Bone Miner Res; 1988 Feb; 3(1):53-61. PubMed ID: 3213604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Induction of alkaline phosphatase by retinoic acid].
    Freimüller-Kreutzer B; Nasheuer HP; Müller WH
    Biol Chem Hoppe Seyler; 1985 Mar; 366(3):317-21. PubMed ID: 4005046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of canine basal cells in prostatic post natal development, induction of hyperplasia, sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I; Schelling KH; Adams JY; Merk FB; Alroy J
    Prostate; 2001 May; 47(3):149-63. PubMed ID: 11351344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of canine basal cells in postnatal prostatic development, induction of hyperplasia, and sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I; Schelling KH; Adams JY; Merk FB; Alroy J
    Prostate; 2001 Aug; 48(3):210-24. PubMed ID: 11494337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.