These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6617571)

  • 21. Nuclear thyroid hormone receptor in the rat uterus.
    Evans RW; Farwell AP; Braverman LE
    Endocrinology; 1983 Oct; 113(4):1459-63. PubMed ID: 6311523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of thyroid hormone binding to heptic nuclei of the rat and a teleost (Oncorhynchus kisutch).
    Darling DS; Dickhoff WW; Gorbman A
    Endocrinology; 1982 Dec; 111(6):1936-43. PubMed ID: 7140642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between the accumulation of pituitary growth hormone and nuclear occupancy by triiodothyronine in the rat.
    Coulombe P; Schwartz HL; Oppenheimer JH
    J Clin Invest; 1978 Nov; 62(5):1020-8. PubMed ID: 213445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thyroid hormone action: in vitro characterization of solubilized nuclear receptors from rat liver and cultured GH1 cells.
    Samuels HH; Tsai JS; Casanova J; Stanley F
    J Clin Invest; 1974 Oct; 54(4):853-65. PubMed ID: 4372251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear (amplified) relationship between nuclear occupancy by triiodothyronine and the appearance rate of hepatic alpha-glycerophosphate dehydrogenase and malic enzyme in the rat.
    Oppenheimer JH; Coulombe P; Schwartz HL; Gutfeld NW
    J Clin Invest; 1978 Apr; 61(4):987-97. PubMed ID: 207725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different intracellular and intranuclear transport of triiodothyronine enantiomers in rat skeletal myoblasts.
    Pontecorvi A; Lakshmanan M; Robbins J
    Endocrinology; 1988 Dec; 123(6):2922-9. PubMed ID: 3197649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytosolic 3,5,3'-triiodo-L-thyronine (T3)-binding protein (CTBP) regulation of nuclear T3 binding: evidence for the presence of T3-CTBP complex-binding sites in nuclei.
    Hashizume K; Miyamoto T; Kobayashi M; Suzuki S; Ichikawa K; Yamauchi K; Ohtsuka H; Takeda T
    Endocrinology; 1989 Jun; 124(6):2851-6. PubMed ID: 2721450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of intrapituitary thyroxine to 3.5.3'-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats.
    Larsen PR; Dick TE; Markovitz BP; Kaplan MM; Gard TG
    J Clin Invest; 1979 Jul; 64(1):117-28. PubMed ID: 447848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of partial food deprivation on the quantity and source of triiodothyronine in several tissues of athyreotic thyroxine-maintained rats.
    van Doorn J; van der Heide D; Roelfsema F
    Endocrinology; 1984 Aug; 115(2):705-11. PubMed ID: 6745175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear binding of T3 and effects of QO2, Na-K-ATPase, and alpha-GPDH in liver and kidney.
    Somjen D; Ismail-Beigi F; Edelman IS
    Am J Physiol; 1981 Feb; 240(2):E146-54. PubMed ID: 6258444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of propylthiouracil on 125I-L-triiodothyronine binding to the nuclei and on malic enzyme activity in rat liver cytosol.
    Knopp J
    Endocrinol Exp; 1980; 14(2):159-64. PubMed ID: 6967013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 5,5'-diphenylhydantoin on the activities of hepatic cytosol malic enzyme and mitochondrial alpha-glycerophosphate dehydrogenase in athyreotic rats.
    Mann DN; Kumara-Siri MH; Surks MI
    Endocrinology; 1983 May; 112(5):1732-8. PubMed ID: 6403334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Increased liver nuclear triiodothyronine-receptors associated with mitochondrial alpha-glycerophosphate dehydrogenase activity in hyperthyroid rats (author's transl)].
    Nakamura H
    Nihon Naibunpi Gakkai Zasshi; 1979 Aug; 55(8):954-62. PubMed ID: 226425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady state organ distribution and metabolism of thyroxine and 3,5,3'-triiodothyronine in intestines, liver, kidneys, blood, and residual carcass of the rat in vivo.
    Nguyen TT; DiStefano JJ; Yamada H; Yen YM
    Endocrinology; 1993 Dec; 133(6):2973-83. PubMed ID: 8243325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triiodothyronine binding to liver nuclear solubilized proteins in vitro.
    Torresani J; DeGroot LJ
    Endocrinology; 1975 May; 96(5):1201-9. PubMed ID: 235420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady state model of 3,5,3'-triiodothyronine transport in liver predicts high cellular exchangeable hormone concentration relative to in vitro free hormone concentration.
    Pardridge WM; Landaw EM
    Endocrinology; 1987 Mar; 120(3):1059-68. PubMed ID: 3803309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amiodarone inhibits T4 to T3 conversion and alpha-glycerophosphate dehydrogenase and malic enzyme levels in rat liver.
    Pekary AE; Hershman JM; Reed AW; Kannon R; Wang YS
    Horm Metab Res; 1986 Feb; 18(2):114-8. PubMed ID: 3699686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain cortex reverse triiodothyronine (rT3) and triiodothyronine concentrations under steady state infusions of thyroxine and rT3.
    Goumaz MO; Kaiser CA; Burger AG
    Endocrinology; 1987 Apr; 120(4):1590-6. PubMed ID: 3830062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Triiodothyronine binding to isolated liver cell nuclei.
    DeGroot LJ; Torresani J
    Endocrinology; 1975 Feb; 96(2):357-9. PubMed ID: 163184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triiodothyronine receptors during maturation.
    DeGroot LJ; Robertson M; Rue PA
    Endocrinology; 1977 Jun; 100(6):1511-5. PubMed ID: 192539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.