These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 6617746)
1. Involvement of periaqueductal gray matter in intestinal effect of centrally administered morphine. Sala M; Parolaro D; Crema G; Spazzi L; Giagnoni G; Cesana R; Gori E Eur J Pharmacol; 1983 Jul; 91(2-3):251-4. PubMed ID: 6617746 [TBL] [Abstract][Full Text] [Related]
2. The role of serotonin in analgesia elicited by morphine in the periaqueductal gray matter (PAG). Schul R; Frenk H Brain Res; 1991 Jul; 553(2):353-7. PubMed ID: 1681985 [TBL] [Abstract][Full Text] [Related]
3. Supraspinal cerebral areas involved in morphine's intestinal inhibition and analgesia. Parolaro D; Sala M; Patrini G; Massi P; Giagnoni G; Gori E Pharmacol Biochem Behav; 1988 Jun; 30(2):319-24. PubMed ID: 3174762 [TBL] [Abstract][Full Text] [Related]
4. Tolerance to morphine microinjections in the periaqueductal gray (PAG) induces tolerance to systemic, but not intrathecal morphine. Siuciak JA; Advokat C Brain Res; 1987 Oct; 424(2):311-9. PubMed ID: 3676830 [TBL] [Abstract][Full Text] [Related]
5. Intestinal effect and analgesia: evidence for different involvement of opioid receptor subtypes in periaqueductal gray matter. Parolaro D; Crema G; Sala M; Santagostino A; Giagnoni G; Gori E Eur J Pharmacol; 1986 Jan; 120(1):95-9. PubMed ID: 2868906 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the involvement of the caudal region of the periaqueductal gray in a subset of morphine-induced alterations of immune status. Lysle DT; Hoffman KE; Dykstra LA J Pharmacol Exp Ther; 1996 Jun; 277(3):1533-40. PubMed ID: 8667220 [TBL] [Abstract][Full Text] [Related]
7. The biochemical and behavioral effects of phospholipase A2 and morphine microinjections in the periaqueductal gray of the rat. Reichman M; Abood LG; Costanzo M Life Sci; 1985 Feb; 36(6):515-23. PubMed ID: 3968975 [TBL] [Abstract][Full Text] [Related]
8. Chronic running wheel activity attenuates the antinociceptive actions of morphine and morphine-6-glucouronide administration into the periaqueductal gray in rats. Mathes WF; Kanarek RB Pharmacol Biochem Behav; 2006 Apr; 83(4):578-84. PubMed ID: 16712909 [TBL] [Abstract][Full Text] [Related]
9. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat. Jensen TS; Yaksh TL Brain Res; 1986 Jan; 363(1):99-113. PubMed ID: 3004644 [TBL] [Abstract][Full Text] [Related]
10. Modulation of morphine antinociception by antagonism of H2 receptors in the periaqueductal gray. Hough LB; Nalwalk JW Brain Res; 1992 Aug; 588(1):58-66. PubMed ID: 1356588 [TBL] [Abstract][Full Text] [Related]
11. Wild running elicited by microinjections of bicuculline or morphine into the inferior colliculus of rats: lack of effect of periaqueductal gray lesions. Bagri A; Di Scala G; Sandner G Pharmacol Biochem Behav; 1992 Apr; 41(4):727-32. PubMed ID: 1594640 [TBL] [Abstract][Full Text] [Related]
12. Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus. Bodnar R; Paul D; Pasternak GW Brain Res; 1991 Sep; 558(2):224-30. PubMed ID: 1664270 [TBL] [Abstract][Full Text] [Related]
13. Blockade of mu- and activation of kappa-opioid receptors in the dorsal periaqueductal gray matter produce defensive behavior in rats tested in the elevated plus-maze. Nobre MJ; Ribeiro dos Santos N; Aguiar MS; Brandão ML Eur J Pharmacol; 2000 Sep; 404(1-2):145-51. PubMed ID: 10980273 [TBL] [Abstract][Full Text] [Related]
14. Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats. Pavlovic ZW; Bodnar RJ Brain Res; 1998 Jan; 779(1-2):158-69. PubMed ID: 9473650 [TBL] [Abstract][Full Text] [Related]
15. Cholecystokinin-octapeptide antagonizes morphine analgesia in periaqueductal gray of the rat. Li Y; Han JS Brain Res; 1989 Feb; 480(1-2):105-10. PubMed ID: 2713644 [TBL] [Abstract][Full Text] [Related]
16. Relative contribution of the dorsal raphe nucleus and ventrolateral periaqueductal gray to morphine antinociception and tolerance in the rat. Campion KN; Saville KA; Morgan MM Eur J Neurosci; 2016 Nov; 44(9):2667-2672. PubMed ID: 27564986 [TBL] [Abstract][Full Text] [Related]
17. Roles of periaqueductal gray and nucleus raphe magnus on analgesia induced by lappaconitine, N-deacetyllappaconitine and morphine. Guo X; Tang XC Zhongguo Yao Li Xue Bao; 1990 Mar; 11(2):107-12. PubMed ID: 2275382 [TBL] [Abstract][Full Text] [Related]
18. Blockade of morphine analgesia by both pertussis and cholera toxins in the periaqueductal gray and locus coeruleus. Bodnar RJ; Paul D; Rosenblum M; Liu L; Pasternak GW Brain Res; 1990 Oct; 529(1-2):324-8. PubMed ID: 2282501 [TBL] [Abstract][Full Text] [Related]
19. Intracerebroventricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat. Bouhassira D; Villanueva L; Le Bars D J Pharmacol Exp Ther; 1988 Oct; 247(1):332-42. PubMed ID: 3171978 [TBL] [Abstract][Full Text] [Related]
20. Effects of electrolytic lesion of dorsolateral periaqueductal gray on analgesic response of morphine microinjected into the nucleus cuneiformis in rat. Haghparast A; Ahmad-Molaei L Neurosci Lett; 2009 Feb; 451(2):165-9. PubMed ID: 19146915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]