These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 6617746)
41. Morphine-induced increases of extracellular histamine levels in the periaqueductal grey in vivo: a microdialysis study. Barke KE; Hough LB Brain Res; 1992 Feb; 572(1-2):146-53. PubMed ID: 1611509 [TBL] [Abstract][Full Text] [Related]
42. Effects of systemic morphine on diffuse noxious inhibitory controls: role of the periaqueductal grey. Bouhassira D; Villanueva L; Le Bars D Eur J Pharmacol; 1992 Jun; 216(2):149-56. PubMed ID: 1397003 [TBL] [Abstract][Full Text] [Related]
43. The role of glutamate in opiate descending inhibition of nociceptive spinal reflexes. van Praag H; Frenk H Brain Res; 1990 Jul; 524(1):101-5. PubMed ID: 1976028 [TBL] [Abstract][Full Text] [Related]
44. Defensive behaviors evoked from the ventrolateral periaqueductal gray of the rat: comparison of opioid and GABA disinhibition. Morgan MM; Clayton CC Behav Brain Res; 2005 Oct; 164(1):61-6. PubMed ID: 16029902 [TBL] [Abstract][Full Text] [Related]
45. Suppression of splenic macrophage functions following acute morphine action in the rat mesencephalon periaqueductal gray. Gomez-Flores R; Suo JL; Weber RJ Brain Behav Immun; 1999 Sep; 13(3):212-24. PubMed ID: 10469523 [TBL] [Abstract][Full Text] [Related]
46. [Antagonism of morphine analgesia and electroacupuncture analgesia by cholecystokinin octapeptide (CCK-8) administered in periaqueductal gray (PAG) of the rabbits]. Cao W; Zhou ZF; Han JS Sheng Li Xue Bao; 1989 Aug; 41(4):388-94. PubMed ID: 2602948 [TBL] [Abstract][Full Text] [Related]
47. C-Fos activation in the periaqueductal gray following acute morphine-3β-D-glucuronide or morphine administration. Arout CA; Caldwell M; McCloskey DP; Kest B Physiol Behav; 2014 May; 130():28-33. PubMed ID: 24631297 [TBL] [Abstract][Full Text] [Related]
48. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Jensen TS; Yaksh TL Brain Res; 1986 May; 372(2):301-12. PubMed ID: 2871901 [TBL] [Abstract][Full Text] [Related]
49. Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats. Tortorici V; Nogueira L; Aponte Y; Vanegas H Pain; 2004 Nov; 112(1-2):113-20. PubMed ID: 15494191 [TBL] [Abstract][Full Text] [Related]
50. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray. Urban MO; Smith DJ Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726 [TBL] [Abstract][Full Text] [Related]
51. Locus coeruleus lesions in the rat enhance the antinociceptive potency of centrally administered clonidine but not morphine. Ossipov MH; Chatterjee TK; Gebhart GF Brain Res; 1985 Aug; 341(2):320-30. PubMed ID: 4041798 [TBL] [Abstract][Full Text] [Related]
52. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons. Tortorici V; Morgan MM J Neurophysiol; 2002 Oct; 88(4):1707-15. PubMed ID: 12364500 [TBL] [Abstract][Full Text] [Related]
53. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Lane DA; Patel PA; Morgan MM Neuroscience; 2005; 135(1):227-34. PubMed ID: 16084660 [TBL] [Abstract][Full Text] [Related]
54. Morphine preferentially activates the periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception. Loyd DR; Morgan MM; Murphy AZ Neuroscience; 2007 Jun; 147(2):456-68. PubMed ID: 17540508 [TBL] [Abstract][Full Text] [Related]
55. Dorsolateral PAG neurons: tonic immobility and morphine effect in freely moving rabbits. Fontani G; Meucci M Physiol Behav; 1983 Aug; 31(2):213-8. PubMed ID: 6634987 [TBL] [Abstract][Full Text] [Related]
56. Antinociceptive tolerance revealed by cumulative intracranial microinjections of morphine into the periaqueductal gray in the rat. Morgan MM; Fossum EN; Levine CS; Ingram SL Pharmacol Biochem Behav; 2006 Sep; 85(1):214-9. PubMed ID: 16979226 [TBL] [Abstract][Full Text] [Related]
57. Substance P microinjected into the periaqueductal gray matter induces antinociception and is released following morphine administration. Rosén A; Zhang YX; Lund I; Lundeberg T; Yu LC Brain Res; 2004 Mar; 1001(1-2):87-94. PubMed ID: 14972657 [TBL] [Abstract][Full Text] [Related]
58. Chronic sucrose intake augments antinociception induced by injections of mu but not kappa opioid receptor agonists into the periaqueductal gray matter in male and female rats. Kanarek RB; Mandillo S; Wiatr C Brain Res; 2001 Nov; 920(1-2):97-105. PubMed ID: 11716815 [TBL] [Abstract][Full Text] [Related]
59. Effect of morphine-induced cortical excitation on somatosensory responses evoked in the periaqueductal grey matter. Hernandez A; Neira S; Soto-Moyano R Eur J Pharmacol; 1985 Sep; 115(2-3):305-8. PubMed ID: 4065211 [TBL] [Abstract][Full Text] [Related]
60. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat. Jacquet YF; Lajtha A Science; 1974 Sep; 185(4156):1055-7. PubMed ID: 4604871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]