BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6617874)

  • 1. Schiff's base formation in the lens protein gamma-crystallin.
    Wistow G; Alligood J; Shinohara T; Somers R
    FEBS Lett; 1983 Sep; 161(2):221-4. PubMed ID: 6617874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation of lens crystallins: a possible mechanism by which aspirin could prevent cataract formation.
    Rao GN; Lardis MP; Cotlier E
    Biochem Biophys Res Commun; 1985 May; 128(3):1125-32. PubMed ID: 4004853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldehydes or dicarbonyls in non-enzymic glycosylation of proteins.
    Beswick HT; Harding JJ
    Biochem J; 1985 Mar; 226(2):385-9. PubMed ID: 3994663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-crystallin can act as a chaperone under conditions of oxidative stress.
    Wang K; Spector A
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):311-21. PubMed ID: 7843902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gammaE-crystallin recruitment to the plasma membrane by specific interaction between lens MIP/aquaporin-0 and gammaE-crystallin.
    Fan J; Donovan AK; Ledee DR; Zelenka PS; Fariss RN; Chepelinsky AB
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):863-71. PubMed ID: 14985303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of dexamethasone by alpha-crystallin.
    Jobling AI; Stevens A; Augusteyn RC
    Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1829-32. PubMed ID: 11431449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The evolutionary kinship of the crystallins of cephalopods and vertebrates with heat-shock proteins and stress-induced proteins].
    Zinov'eva RD; Tomarev SI; Piatigorsky J
    Izv Akad Nauk Ser Biol; 1994; (4):566-76. PubMed ID: 7987197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress.
    Weinreb O; van Rijk AF; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3893-7. PubMed ID: 11053291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling.
    Salim A; Bano A; Zaidi ZH
    Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress.
    Muchowski PJ; Valdez MM; Clark JI
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):951-8. PubMed ID: 10102292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin.
    Sinha D; Esumi N; Jaworski C; Kozak CA; Pierce E; Wistow G
    Mol Vis; 1998 Apr; 4():8. PubMed ID: 9565648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter.
    Yang Y; Cvekl A
    J Mol Biol; 2005 Aug; 351(3):453-69. PubMed ID: 16023139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens crystallins of invertebrates--diversity and recruitment from detoxification enzymes and novel proteins.
    Tomarev SI; Piatigorsky J
    Eur J Biochem; 1996 Feb; 235(3):449-65. PubMed ID: 8654388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens crystallin changes associated with amphibian metamorphosis: involvement of a beta-crystallin polypeptide.
    Jiang YJ; Chiou SH; Chang WC
    Biochem Biophys Res Commun; 1989 Nov; 164(3):1423-30. PubMed ID: 2590209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two roles for mu-crystallin: a lens structural protein in diurnal marsupials and a possible enzyme in mammalian retinas.
    Segovia L; Horwitz J; Gasser R; Wistow G
    Mol Vis; 1997 Sep; 3():9. PubMed ID: 9285773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone.
    Boyle D; Takemoto L
    Exp Eye Res; 1994 Jan; 58(1):9-15. PubMed ID: 8157104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic lens-protein degrading activity in bovine ciliary body. III. Lens crystallin degradation by fractions A and B.
    Hayasaka S; Fukuyo T; Hara S; Nakazawa M; Kabasawa I
    Jpn J Ophthalmol; 1986; 30(2):180-4. PubMed ID: 3761742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reaction of glutathione with the eye-lens protein gamma-crystallin.
    Slingsby C; Miller L
    Biochem J; 1985 Aug; 230(1):143-50. PubMed ID: 4052032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.