These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6617987)

  • 1. The program of protein synthesis during the development of the micromere-primary mesenchyme cell line in the sea urchin embryo.
    Harkey MA; Whiteley AH
    Dev Biol; 1983 Nov; 100(1):12-28. PubMed ID: 6617987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sea urchin profilin gene is specifically expressed in mesenchyme cells during gastrulation.
    Smith LC; Harrington MG; Britten RJ; Davidson EH
    Dev Biol; 1994 Aug; 164(2):463-74. PubMed ID: 8045349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromere Differentiation in the Sea Urchin Embryo: Two-Dimensional Gel Electrophoretic Analysis of Newly Synthesized Proteins: (sea urchin/micromere/protein synthesis/differentiation).
    Matsuda R; Kitajima T; Ohinata H; Katoh Y; Higashinakagawa T
    Dev Growth Differ; 1988 Feb; 30(1):25-33. PubMed ID: 37280888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
    Fink RD; McClay DR
    Dev Biol; 1985 Jan; 107(1):66-74. PubMed ID: 2578117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads.
    Ettensohn CA; McClay DR
    Dev Biol; 1986 Oct; 117(2):380-91. PubMed ID: 3758478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the synthesis and intracellular localization of nuclear proteins during embryogenesis in the sea urchin Strongylocentrotus purpuratus.
    Servetnick MD; Wilt FH
    Dev Biol; 1987 Sep; 123(1):231-44. PubMed ID: 3622930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo.
    Hertzler PL; McClay DR
    Dev Biol; 1999 Mar; 207(1):1-13. PubMed ID: 10049560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of competence in cultured sea urchin micromeres.
    Page L; Benson S
    Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary mesenchyme cell patterning during the early stages following ingression.
    Peterson RE; McClay DR
    Dev Biol; 2003 Feb; 254(1):68-78. PubMed ID: 12606282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos.
    Hardin J; Illingworth CA
    Dev Dyn; 2006 Nov; 235(11):3121-31. PubMed ID: 16958110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo.
    Ruffins SW; Ettensohn CA
    Dev Biol; 1993 Nov; 160(1):285-8. PubMed ID: 8224545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.